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A Online Appendix A: Proofs
Proposition 1. Based on the consumption rules in (3) and (4) and the definition of V1 (w1) in
(7), we know

V
′

1 (w1) =
1

2
(1− λ1)u

′
(
1

2
(1− λ1)w1

)
+

1

2
(1 + λ1)u

′
(
1

2
(1 + λ1)w1

)
.

Since u is quadratic, we know that u′′ is a constant and

V
′′

1 = u′′ ·
[
1

4
(1− λ1)

2 +
1

4
(1 + λ1)

2

]
=

1

2
u′′ ·

(
1 + λ2

1

)
. (A.1)

This proves the first part of Proposition 1. From (6), we know

u′ (cDeliberate
0 (∆)

)
= V

′

1 (w1) with w1 = ∆− cDeliberate
0 (∆) . (A.2)

Taking a partial derivative with respect to ∆, we have

ϕDeliberate
0 =

1

2

(
1 + λ2

1

) (
1− ϕDeliberate

0

)
=

1
2
(1 + λ2

1)

1 + 1
2
(1 + λ2

1)
(A.3)

This proves the second part of Proposition 1.
∗Lian: UC Berkeley and NBER (email: chen_lian@berkeley.edu).
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A generalization of Proposition 1. Consider the more general specification of t = 1 con-
sumption rule in (10). Based on (7), we have

V
′

1 (w1) =
1

2
(1− λ1)u

′
(
1

2
(1− λ1)w1 − λ̄1

)
+

1

2
(1 + λ1)u

′
(
1

2
(1 + λ1)w1 + λ̄1

)
.

Because u is quadratic, we know that V
′′
1 shares the same formula as (A.1). As a result, ϕDeliberate

0

shares the same formula as (A.3). Proposition 1 again follows. This explains that the key to the
high-MPC result is mistakes in the future consumption’s response to saving changes, λ1.

Proof of Proposition 2. Based on each self’s actual consumption rules {ct (wt)}T−1
t=0 , I can

define the value function Vt (wt) as a function of the current state, wt, for each t ∈ {0, · · · , T − 1} ,

Vt (wt) ≡ u (ct (wt)) +
T−t−1∑
k=1

δku (ct+k (wt+k)) + δT−tv (wT ) , (A.4)

subject to the budget in (13). For the last period T , we have VT (wT ) = v (wT ) . Given (A.4), each
self t’s deliberate consumption rule defined in (14) satisfies

cDeliberate
t (wt) = arg max

ct
u (ct) + δVt+1 (R (wt − ct)) . (A.5)

Moreover, for t ∈ {0, · · · , T − 1} , the value function Vt (wt) defined in (A.4) satisfies

Vt (wt) = u (ct (wt)) + δVt+1 (R (wt − ct (wt))) . (A.6)

Note that because I assume u, v, and ct are third-order continuously differentiable, Vt is third-order
continuously differentiable too.

The optimal deliberate consumption now is given by1

u′ (cDeliberate
t (wt)

)
= RδV

′

t+1

(
R
(
wt − cDeliberate

t (wt)
))

. (A.7)

We henceforth have:

u′′ (cDeliberate
t (w̄t)

) ∂cDeliberate
t (w̄t)

∂wt

= R2δ

(
1− ∂cDeliberate

t (w̄t)

∂wt

)
V

′′

t+1 (w̄t+1) ,

where w̄t+1 = R (w̄t − c̄t) = R
(
w̄t − cDeliberate

t (w̄t)
)

and
1This equation imposes the concavity of the continuation value Vt+1 (wt+1) . This is true around the path

{w̄t, c̄t}T−1
t=0 because V

′′

t+1 (w̄t+1) = u′′ (c̄t+1) · Γt+1 < 0, as proved below.
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∂cDeliberate
t (w̄t)

∂wt

=
R2δV

′′
t+1 (w̄t+1)

u′′
(
cDeliberate
t (w̄t)

)
+R2δV

′′
t+1 (w̄t+1)

. (A.8)

From (A.6):

V
′

t (wt) =
∂ct (wt)

∂wt

u′ (ct (wt)) +

(
1− ∂ct (wt)

∂wt

)
δRV

′

t+1 (wt+1) , (A.9)

and

V
′′

t (w̄t) =

(
∂ct (w̄t)

∂wt

)2

u′′ (ct (w̄t)) +

(
1− ∂ct (w̄t)

∂wt

)2

δR2V
′′

t+1 (w̄t+1) ,

+
∂2ct (w̄t)

∂w2
t

[
u′ (ct (w̄t))− δRV

′

t+1 (w̄t+1)
]
.

At w̄t, because ct (w̄t) = cDeliberate
t (w̄t) = c̄t, from (A.7), we have u′ (ct (w̄t)) = δRV

′
t+1 (w̄t+1) . As a

result,

V
′′

t (w̄t) =

(
∂ct (w̄t)

∂wt

)2

u′′ (ct (w̄t)) +

(
1− ∂ct (w̄t)

∂wt

)2

δR2V
′′

t+1 (w̄t+1) . (A.10)

Define Γt ≡ V
′′
t (w̄t) /u

′′ (ct (w̄t)) , ϕ
Deliberate
t ≡ ∂cDeliberate

t (w̄t)

∂wt
, and

ϕt ≡
∂ct (w̄t)

∂wt

= (1− λt)ϕ
Deliberate
t . (A.11)

From (A.8) and (A.10), we have

ϕDeliberate
t =

δR2Γt+1
u′′(c̄t+1)
u′′(c̄t)

1 + δR2Γt+1
u′′(c̄t+1)
u′′(c̄t)

(A.12)

and

Γt = ϕ2
t + (1− ϕt)

2 δR2Γt+1
u′′ (c̄t+1)

u′′ (c̄t)

= (1− λt)
2

(
δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

)2
(
1 + δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

)2 +

(
1 + λtδR

2Γt+1
u′′(c̄t+1)
u′′(c̄t)

1 + δR2Γt+1
u′′(c̄t+1)
u′′(c̄t)

)2

δR2Γt+1
u′′ (c̄t+1)

u′′ (c̄t)

=

(
δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

)2
1 + δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

λ2
t +

δR2Γt+1
u′′(c̄t+1)
u′′(c̄t)

1 + δR2Γt+1
u′′(c̄t+1)
u′′(c̄t)

. (A.13)

We know Γt+1 and ϕDeliberate
t increases with {|λt+k|}T−t−1

k=1 for all t ∈ {0, · · · , T − 1} . Proposition 2
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then follows.

Proof of Corollary 1. For the pre-shock (∆̄ = 0) outcome, from (15), we have

u′ (c̄t) = δRu′ (c̄t+1) .

As a result, for all t ∈ {0, · · · , T − 1} ,

c̄t+1

c̄t
= (δR)

1
γ . (A.14)

Substituting it into (A.12) and (A.13), we have

ϕDeliberate
t =

δR2Γt+1 (δR)−
γ+1
γ

1 + δR2Γt+1 (δR)−
γ+1
γ

=
δ−

1
γR1− 1

γΓt+1

1 + δ−
1
γR1− 1

γΓt+1

(A.15)

and

Γt =

(
δ−

1
γR1− 1

γΓt+1

)2
1 + δ−

1
γR1− 1

γΓt+1

λ2
t +

δ−
1
γR1− 1

γΓt+1

1 + δ−
1
γR1− 1

γΓt+1

≡ f (Γt+1) ,

with

f (x) ≡ δ−
1
γR1− 1

γ x

1 + δ−
1
γR1− 1

γ x
+

(
δ−

1
γR1− 1

γ x
)2

1 + δ−
1
γR1− 1

γ x
λ2 =

δ−
1
γR1− 1

γ x

1 + δ−
1
γR1− 1

γ x

(
1 + λ2δ−

1
γR1− 1

γ x
)
.

We also know that ΓT = v′′(w̄T )
u′′(c̄T )

= κ > 0, where I use w̄T = c̄T .

Let Γ = δ
− 1

γ R
1− 1

γ −1

δ
− 1

γ R
1− 1

γ

[
1−

(
δ
− 1

γ R
1− 1

γ

)
λ2

] denote the fixed point of f. That is f (Γ) = Γ. Moreover,

as long as δ−
1
γR1− 1

γ > 1 and |λ| <
(
δ−

1
γR1− 1

γ

)− 1
2
, we have Γ > f (x) > x if 0 < x < Γ; and

Γ < f (x) < x if x > Γ. We then have two cases:
1) If Γ > κ. We have Γ > Γ0 = fT (κ) > f (T−1) (κ) > · · · > κ = ΓT . As a result, Γ0 = fT (κ)

converges to the fixed point Γ when T → +∞.

2) If Γ < κ. We have Γ < Γ0 = fT (κ) < f (T−1) (κ) < · · · < κ = ΓT . As a result, Γ0 = fT (κ)

converges to the fixed point Γ when T → +∞.

Together, one way or another, as long as δ−
1
γR1− 1

γ > 1 and |λ| <
(
δ−

1
γR1− 1

γ

)− 1
2
, Γ0 → Γ when

T → +∞. From (A.15), we have, when T → +∞,

ϕDeliberate
0 →ϕDeliberate ≡ δ−

1
γR1− 1

γ − 1

δ−
1
γR1− 1

γ (1− λ2)
.
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Proof of Proposition 3. Based on (7) and (21), we have

V
′

1

(
w1; λ̄1

)
=

1

2
u′
(
1

2
w1 − λ̄1

)
+

1

2
u′
(
1

2
w1 + λ̄1

)
∂V

′
1

(
w1; λ̄1

)
∂λ̄1

= −1

2
u′′
(
1

2
w1 − λ̄1

)
+

1

2
u′′
(
1

2
w1 + λ̄1

)
∂2V

′
1

(
w1; λ̄1

)
∂λ̄2

1

=
1

2
u′′′
(
1

2
w1 − λ̄1

)
+

1

2
u′′′
(
1

2
w1 + λ̄1

)
.

We have
∂V

′
1 (w1; 0)

∂λ̄1

= 0 and ∂2V
′
1 (w1; 0)

∂λ̄2
1

> 0. (A.16)

Based on (6) and (7), we have

u′ (cDeliberate
0

(
∆; λ̄1

))
= V

′

1

(
∆− cDeliberate

0

(
∆; λ̄1

)
; λ̄1

)
,

u′′ (cDeliberate
0

(
∆; λ̄1

)) ∂cDeliberate
0

(
∆; λ̄1

)
∂λ̄1

= −V
′′

1

(
∆− cDeliberate

0

(
∆; λ̄1

)
; λ̄1

) ∂cDeliberate
0

(
∆; λ̄1

)
∂λ̄1

+
∂V

′
1

(
∆− cDeliberate

0

(
∆; λ̄1

)
; λ̄1

)
∂λ̄1

. (A.17)

Together with (A.16), we have

∂cDeliberate
0 (∆; 0)

∂λ̄1

=

∂V
′
1 (∆−cDeliberate

0 (∆;0);0)
∂λ̄1

u′′
(
cDeliberate
0 (∆; 0)

)
+ V

′′
1

(
∆− cDeliberate

0 (∆; 0) ; 0
) = 0.

and

u′′
(
cDeliberate
0 (∆; 0)

) ∂2cDeliberate
0 (∆; 0)

∂λ̄2
1

= −V
′′
1

(
∆− cDeliberate

0 (∆; 0) ; 0
) ∂2cDeliberate

0 (∆; 0)

∂λ̄2
1

+
∂2V

′
1

(
∆− cDeliberate

0 (∆; 0) ; 0
)

∂λ̄2
1

.

As a result,

∂2cDeliberate
0 (∆; 0)

∂λ̄2
1

=

∂2V
′
1 (∆−cDeliberate

0 (∆;0);0)
∂λ̄2

1

u′′
(
cDeliberate
0 (∆) ; 0

)
+ V

′′
1

(
∆− cDeliberate

0 (∆; 0) ; 0
) < 0.

This proves Proposition 3.
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B Online Appendix B: Additional Results

B.1 Partial Sophistication and the Role of Perceived Dynamic Incon-
sistency

The main analysis can accommodate a more general interpretation if I re-define deliberate con-
sumption (14) based on current self 0′s perceived future consumption rules {c̃t (wt)}T−1

t=1 . That is,
for t ∈ {0, · · · , T − 1} ,

cDeliberate
t (wt) ≡ arg max

ct
u (ct) +

T−t−1∑
k=1

δku (c̃t+k (wt+k)) + δT−tv (wT ) , (B.1)

subject to the budget (13). Future
{
cDeliberate
t (wt)

}T−1

t=1
can then be interpreted as the consumption

that self 0 thinks is optimal at each future period t ∈ {1, · · · , T − 1} , given utility (11) and her
perceived future consumption rules {c̃t (wt)}T−1

t=1 .

I can then define self 0′s perceived future mistakes
{
λ̃t

}T−1

t=1
as how her perceived future con-

sumption rules {c̃t (wt)}T−1
t=1 deviate from what she deems optimal

{
cDeliberate
t (wt)

}T−1

t=1
. Specifically,

similar to Proposition 1, I impose that perceived mistakes in future consumption only take the
form of mistakes in response to saving changes, while there are no mistakes in the absence of the
shock ∆. That is, there are sequences {c̄t}T−1

t=0 and {w̄t}Tt=0 such that

(15) holds and c̃t (w̄t) = c̄t ∀t ∈ {1, · · · , T − 1} . (B.2)

We can then define self 0′s perceived future mistakes in response to saving changes
{
λ̃t

}T−1

t=1
similar

to (16):
ϕ̃t =

(
1− λ̃t

)
ϕDeliberate
t ∀t ∈ {1, · · · , T − 1} , (B.3)

where ϕ̃t ≡ ∂c̃t(w̄t)
∂wt

and ϕDeliberate
t =

∂c̃Deliberate
t (w̄t)

∂wt
. We can then re-state Proposition 2 as how self 0′s

perceived future mistakes
{
λ̃t

}T−1

t=1
increase the current MPC, ϕDeliberate

0 .

Corollary B.1. Based on the definition in (B.1) and (B.3), ϕDeliberate
0 ≡ ∂cDeliberate

0 (w̄0)

∂w0
increases

with perceived future mistakes
∣∣∣λ̃t

∣∣∣ for each t ∈ {1, · · · , T − 1} , as long as (B.2) holds.

From this reinterpretation, the key to the high-MPC result is: the current self thinks that her
future consumption will deviate from what she deems optimal. In other words, the essence is a
form of perceived dynamic inconsistency. For the specific behavioral foundations considered in
Section 4, such dynamic inconsistency can come from two sources. First, perceived differences in
different selves’ decision utility (such as present bias Corollaries B.6 and B.7). Second, violations
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of the law of iterated expectations (such as versions of inattention and diagnostic expectations in
Corollaries B.3 – B.5).

One important example of how perceived future mistakes are determined is the case of partial
sophistication as in O’Donoghue and Rabin (1999, 2001). That is, the current self has a partial
understanding of future mistakes, and her perceived future mistake at t is given by:

λ̃t = sλt, (B.4)

where s ∈ [0, 1] captures current self 0’s degree of sophistication. There are two immediate lessons.
First, partial sophistication suffices for all qualitative results about how future mistakes increase
current MPCs. Second, current MPCs increase with the degree of sophistication.

Corollary B.2. With (B.4), ϕDeliberate
0 increases with current self 0’s degree of sophistication s.

Proof of Corollary B.1 and Corollary B.2. The proof of Proposition 2 goes through exactly,
with perceived future mistakes λ̃t replacing the role of actual future mistakes λt. Corollary B.1
then follows. Corollary B.2 then follows directly from Corollary B.1 and (B.4).

B.2 Robustness Checks for the Numerical Illustration

Here, I conduct robustness checks with other parameterizations of the numerical exercise described
in Section 3.

In Figure B.1, I first consider a higher relative degree of risk aversion γ = 2, while keeping
other parameters constant. We can see that the deliberate MPC is still very similar to the one
calculated analytically in Corollary 1. The main lesson on how future mistakes in response to
saving changes increase the current MPC is unchanged.
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Figure B.1: Robustness Checks: γ = 2.

In Figure B.2, I then consider a higher return on saving R = 1.07, while keeping other pa-
rameters constant. We can see that the deliberate MPC is still very similar to the one calculated
analytically in Corollary 1. The main lesson on how future mistakes in response to saving changes
increase the current MPC is unchanged.
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Figure B.2: Robustness Checks: R = 1.07.

In Figure B.3, I then consider a higher discount factor δ = 0.93, while keeping other parameters
constant. We can see that the deliberate MPC is still very similar to the one calculated analytically
in Corollary 1. The main lesson on how future mistakes in response to saving changes increase the
current MPC is unchanged.
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Figure B.3: Robustness Checks: δ = 0.93.

B.3 The Precautionary Saving Motive and MPCs

A natural question is whether the precautionary saving motive driven by future mistakes in overall
consumption level can also impact current MPCs. To illustrate this, consider the same environment
as in Figure 1, with u (c) = c1−γ

1−γ
; γ = 1.1; σ = 1; δ = 0.902; R = 1.04; and a = 0. Instead of

mistakes in response to saving changes in (18), I focus on mistakes in the overall consumption level{
λ̄t

}T−1

t=1
. Specifically, similar to (21), these mistakes take the form of an additive deviation from

the deliberate counterpart,

ct (xt) = min
{
− a

R
+ xt, c

Deliberate
t

(
xt − λ̄t

)}
,

which makes sure the consumer will not violate her borrowing constraints despite her mistakes.
As in Figure 1, with uncertainty, it is easier to write the actual consumption rule as a function of
cash on hand xt. When λ̄t > 0, self t’s under-consumes (even in absence of the shock ∆). When
λ̄t < 0, self t’s over-consumes. From Figure B.4, we can see this type of additive future mistakes
in overall consumption levels

{
λ̄t

}T−1

t=1
effectively does not matter for the current MPC ϕDeliberate

0 .2

2In Figure B.4, the x-axis is λ̄t (in the unit of the standard deviation of the income risk σ = 1).
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Figure B.4: The Precautionary Saving Motive and MPCs.

In applications, the essentially only possibility that future mistakes in overall consumption
levels are large enough to matter for MPCs in (23) is that these mistakes take a multiplicative
form

ct (wt) = cDeliberate
t ((1− Λt)wt) , (B.5)

where Λt ̸= 0 captures self t’s mistake. In this case, mistakes in overall consumption level can
be very large: at wt, self t behaves as if her wealth level were (1− Λt)wt, which can deviate
significantly from wt if Λt is away from zero. The precautionary saving motive due to those future
mistakes can be large, which can impact MPCs nontrivially. Below, I provide a thorough analysis
of this case. When the utility function is not that concave (EIS> 1), the high-MPC channel focused
in the paper in Proposition 2 still dominates and future mistakes still unambiguously lead to high
MPCs. When the utility function is very concave (EIS< 1), the precautionary saving channel may
dominate.

B.4 Combined Multiplicative Mistakes

In some popular behavioral foundations, mistakes in response to saving changes come together with
mistakes in the overall consumption level. The most classical example is the plain-vanilla version
of hyperbolic discounting without commitment devices. In a homothetic case, such a combined
mistake take a multiplicative form. This allows me to provide a sharp characterization on how
such “combined” mistakes impact current MPCs.

Specifically, let the utility be given by the CRRA form with u (c) = v (c) = c1−γ

1−γ
. In this

homothetic case, the frictionless consumption rule will be a multiple of the wealth wt. Consider
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the case that the actual consumption rules inherit this property: for t ∈ {0, · · · , T − 1} ,

ct (wt) = Φtwt and cDeliberate
t (wt) = ΦDeliberate

t wt, (B.6)

where, similar to (16), self t’s mistake Λt is given by

Φt = (1− Λt) Φ
Deliberate
t , (B.7)

where cDeliberate
t (wt) is defined based on Definition 1 as usual. In the homothetic environment

here, future mistake Λt takes a multiplicative as in (B.5) and plays a dual role. When Λt > 0,

self t both under-consumes overall and under-reacts to changes in wt. When Λt < 0, self t both
over-consumes overall and over-reacts to changes in wt. In other words, Λt combines mistakes in
response to saving changes with mistakes in the overall consumption level.

I can now study how these “combined” future mistakes {Λt}T−1
t=1 impact the current consumption

cDeliberate
0 (w0). In the homothetic environment here, ΦDeliberate

0 in (B.6) also plays a dual role. It
determines both the current MPC and the overall current consumption level. Future mistakes’
impact on ΦDeliberate

0 then combines the high-MPC effect in Proposition 2 and the low-consumption-
level effect in Proposition 3.

Proposition B.1. (1) When γ < 1, ΦDeliberate
0 increases with the future mistake |Λt| in a neigh-

borhood of Λt = 0 for each t ∈ {1, · · · , T − 1} .
(2) When γ > 1, ΦDeliberate

0 decreases with the future mistake |Λt| in a neighborhood of Λt = 0

for each t ∈ {1, · · · , T − 1} .

When the utility function is not that concave (γ < 1), the high-MPC channel in Proposition
2, which pushes ΦDeliberate

t higher, dominates the precautionary saving channel in Proposition 3,
which pushes ΦDeliberate

t lower. When the utility function is very concave (γ > 1), the precautionary
saving channel in Proposition 3, which pushes ΦDeliberate

t lower, dominates.3

Proof of Proposition B.1. I guess and verify the continuation value function defined in (A.4)
takes the form of

Vt (wt) = κt
w1−γ

t

1− γ

3One may wonder how to reconcile Proposition B.1 with Figure B.4, where the precautionary saving motive does
not matter much for the MPC. Note that, in Figure B.4, as the rest of the paper, mistakes in overall consumption
level take the form of an “additive” deviation from the deliberate counterpart, similar to (21). Figure B.4 shows
that the precautionary saving motive driven by those types of mistakes is unlikely to matter for the MPC. On
the other hand, mistakes in (B.7) take a multiplicative form. It leads to large deviations from the deliberation
counterpart and large precautionary saving motives in Proposition B.1.
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for t ∈ {0, · · · , T} . I work with backward induction. At T, I have:

VT (wT ) =
w1−γ

T

1− γ
and κT = 1.

For each t ≤ T − 1, from (A.7), the deliberate consumption is given by

(
cDeliberate
t (wt)

)−γ
= δRκt+1

(
R
(
wt − cDeliberate

t (wt)
))−γ

ΦDeliberate
t =

(δκt+1)
− 1

γ (R)1−
1
γ

1 + (δκt+1)
− 1

γ (R)1−
1
γ

(B.8)

From (B.7), the actual consumption is given by

Φt =
(1− Λt) (δκt+1)

− 1
γ (R)1−

1
γ

1 + (δκt+1)
− 1

γ (R)1−
1
γ

.

From the recursive formulation of the value function in (A.6), we have:

κt =

(
(1− Λt)

(δκt+1)
− 1

γ (R)1−
1
γ

1 + (δκt+1)
− 1

γ (R)1−
1
γ

)1−γ

+ δκt+1R
1−γ

(
1− (1− Λt)

(δκt+1)
− 1

γ (R)1−
1
γ

1 + (δκt+1)
− 1

γ (R)1−
1
γ

)1−γ

.

Define

f (Λ, κ) ≡

(
(1− Λ)

(δκ)−
1
γ (R)1−

1
γ

1 + (δκ)−
1
γ (R)1−

1
γ

)1−γ

+ δκR1−γ

(
1− (1− Λ)

(δκ)−
1
γ (R)1−

1
γ

1 + (δκ)−
1
γ (R)1−

1
γ

)1−γ

.

We have

∂f (Λ, κ)

∂Λ
= − (1− γ)

(
ΦDeliberate)1−γ

(1− Λ)−γ+(1− γ) ΦDeliberateδκR1−γ
(
1− (1− Λ)ΦDeliberate)−γ

,

where

ΦDeliberate =
(δκ)−

1
γ (R)1−

1
γ

1 + (δκ)−
1
γ (R)1−

1
γ

∈ (0, 1) . (B.9)

Moreover,

∂2f (Λ, κ)

∂Λ2
= −γ (1− γ)

(
ΦDeliberate)1−γ

(1− Λ)
−γ−1−γ (1− γ)

(
ΦDeliberate)2 δκR1−γ

(
1− (1− Λ)ΦDeliberate)−γ−1

.

12



Together with (B.9), we have

∂f (0, κ)

∂Λ
= − (1− γ)

(
ΦDeliberate)1−γ

+ (1− γ) ΦDeliberateδκR1−γ
(
1− ΦDeliberate)−γ

= 0

∂2f (0, κ)

∂Λ2
= −γ (1− γ)

(
ΦDeliberate)1−γ − γ (1− γ)

(
ΦDeliberate)2 δκR1−γ

(
1− ΦDeliberate)−γ−1

= −γ (1− γ)
(
ΦDeliberate)2−γ

[(
ΦDeliberate)−1

+
(
ΦDeliberate)γ δκR1−γ

(
1− ΦDeliberate)−γ−1

]
= −γ (1− γ)

(
ΦDeliberate)2−γ

[(
ΦDeliberate)−1

+
(
1− ΦDeliberate)−1

]
.

So
∂2f (0, κ)

∂Λ2
> 0 ⇐⇒ γ > 1.

Moreover,

∂f (0, κ)

∂κ
> 0.

Together, this means

1. When γ < 1, κDeliberate
t decreases with mistake |Λt+k| in a neighborhood of Λt+k = 0 for each

k ∈ {0, · · · , T − t− 1} .

2. When γ > 1, κDeliberate
t increases with mistake |Λt+k| in a neighborhood of Λt+k = 0 for each

k ∈ {0, · · · , T − t− 1} .

Together with (B.8), we arrive at Proposition B.1.

B.5 Inattention

Based on the perceived wp
t (wt) in (24), the actual consumption rule for each self t ∈ {0, · · · , T − 1}

is given by
ct (wt) = arg max

ct
u (ct) + δVt+1 (R (wp

t (wt)− ct)) , (B.10)

where the continuation value function Vt+1 is defined as in (A.4). To isolate the impact of future
inattention on current consumption, the deliberate consumption is defined as in (A.5). As a
corollary of Proposition 2, future consumption mistakes in the form of inattention lead to higher
current MPCs.

Corollary B.3. ϕDeliberate
0 increases with future selves’ degrees of inattention {λt}T−1

t=1 if the default
wealth wd

t is the pre-shock value w̄t for all t.

In the inattention case studied in Corollary B.3, each self’s perceived wt is given by a determin-
istic weighted average between the actual wt and the default. This follows the sparsity approach
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in Gabaix (2014). An alternative way to model inattention is through noisy signals (Sims, 2003).
These two approaches will lead to similar predictions on MPCs.

Specifically, it’s well known that one needs linear consumption rules (quadratic utility) and
Normally distributed fundamentals to obtain tractability with noisy signals. I hence consider the
quadratic utility case of the problem set up in Section 2. I assume a Normally distributed exogenous
shock, i.e., ∆ ∼ N (0, σ2) .4 Unlike the main analysis, each self t’s knowledge of the current wt is
now summarized by a noisy signal xt = wt + ϵt, while ϵt ∼ N

(
0, σ2

ϵt

)
and is independent of ∆ and

other ϵt. In this case, each self understands that her signal is noisy and tries to infer her actual wt

from the signal.
E [wt | xt] = (1− λt)xt + λtw̄t, (B.11)

where λt = V ar(ϵt)
V ar(wt)+V ar(ϵt)

∈ [0, 1] depends negatively on the signal-to-noise ratio of her signal
about wt.

Based on this signal, the actual consumption rule of each self t is given by

ct (xt) = arg max
ct

u (ct) + δE [Vt+1 (R (wt − ct)) |xt] , (B.12)

where the continuation value function Vt+1 is defined in (A.4) and the deliberate consumption is
defined in (A.5), taking future selves’ inattention to permanent income as given. The deliberate
MPC is given by ϕDeliberate

t ≡ ∂cDeliberate
t (wt)

∂wt
.5 We have

Corollary B.4. Each self t’s deliberate MPC ϕDeliberate
t increases with future selves’ degrees of

inattention {λt+k}T−t−1
k=1 .

As discussed in the main text, the essence of the high-MPC result is that the current self
thinks that her future consumption will deviate from what she deems optimal. For the belief-based
distortion considered in Corollaries B.3 and B.4, such perceived dynamic inconsistency comes in
the form of violations of the law of iterated expectations. That is,

Et [Et+1 [wt+1]] ̸= Et [wt+1] , (B.13)

where Et [·] captures self t’s belief. To see this, note that, in the sparsity case (24), we have
Et [wt+1] = R (wp

t (wt)− ct) and Et [Et+1 [wt+1]] = R (1− λt+1) (w
p
t (wt)− ct) + λt+1w

d
t+1, which

leads to (B.13). In the noisy signal case, Et [wt+1] = R (E [wt | xt]− ct) and Et [Et+1 [wt+1]] =

R (1− λt+1) (E [wt | xt]− ct) + λt+1w̄t+1, which leads to (B.13).
4This together with the linear actual consumption rule from (B.12) guarantees that each wt is Normally dis-

tributed too.
5Since cDeliberate

t (wt) is linear with quadratic utility, ϕDeliberate
t does not depend on wt.
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This discussion also helps illustrate what forms of future inattention generate relevant mistakes
that lead to higher current MPCs. To break law of iterated expectations, it is crucial that the latter
self’s information set does not nest the earlier self’s information set. In other words, some forms
of bounded recall is needed. The classical formulation of Rational Inattention (Sims, 2003), which
maintains perfect recall and law of iterated expectations, will not generate relevant mistakes that
lead to higher current MPCs. On the other hand, modern formulations of Rational Inattention
incorporating bounded recall (Da Silveira, Sung and Woodford, 2020; Afrouzi et al., 2020) and
the sparsity model studied above break law of iterated expectations and will generate relevant
mistakes leading to higher current MPCs. For example, in the noisy signal case in Corollary B.4,
self t+ 1’s information (summarized by xt+1) does not nest self t’s information xt.

Proof of Corollary B.3. From (24) and (B.10), we know the degree of inattention λt here
corresponds to the degree of mistake in (16). Corollary B.3 then follows from Proposition 2.

Proof of Corollary B.4. The value in (A.6) is now given by

Vt (wt) =

∫
[u (ct (wt + ϵt)) + δVt+1 (R (wt − ct (wt + ϵt)))] ft (ϵt) dϵt, (B.14)

where ft (·) is the p.d.f. for ϵt ∼ N
(
0, σ2

ϵt

)
. Similar to the proof of Proposition 2, I use Γt ≡

V
′′
t /u

′′ > 0 to define the “concavity” of the continuation value function. From (A.5), the deliberate
MPC is then given by

ϕDeliberate
t =

δR2Γt+1

1 + δR2Γt+1

.

From the actual consumption in (B.12), we have6

ϕt = (1− λt)ϕ
Deliberate
t =

(1− λt) δR
2Γt+1

1 + δR2Γt+1

, (B.15)

where From (B.14), we have

∂Vt (wt)

∂wt

=

∫ [
ϕtu

′ (ct (wt + ϵt)) + (1− ϕt) δR
∂Vt+1 (wt+1)

∂wt+1

]
ft (ϵt) dϵt,

6ϕt ≡ ∂ct(xt)
∂xt

. Since ct (·) is linear with quadratic utility, ϕt does not depend on xt.
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where wt+1 = R (wt − ct (wt + ϵt)) . The recursive formulation of Γt is then given by

Γt = (ϕt)
2 + (1− ϕt)

2 Γt+1δR
2

=
(δR2Γt+1)

2

1 + δR2Γt+1

λ2
t +

δR2Γt+1

1 + δR2Γt+1

.

We have Γt increases in {λt+k}T−t−1
k=0 . Corollary B.4 then follows.

B.6 Diagnostic Expectations

To follow closely Bianchi, Ilut and Saijo (2023), I use the three-period example with quadratic
utility in Section 1. In the final period t = 2, as in (3), the consumer consumes out of all her
remaining saving, c2 (w2) = w2. In the middle period t = 1, a higher saving w1 triggers more
vivid memories of good times for the consumer, which leads her to become overly optimistic about
c2. On the other hand, a lower saving w1 triggers more vivid memories of bad times for the
consumer, which leads her to become overly pessimistic about c2. Mathematically, the consumer’s
consumption c1 (w1) at t = 1 is given by

u′ (c1 (w1)) = Eθ
1 [u

′ (c2 (w2))] , (B.16)

where Eθ
1 [·] captures her diagnostic expectation given by7

Eθ
1 [c2 (w2)] = (1 + θ) c2 (w2) , (B.17)

and θ > 0 measures the degree of over-reaction in expectation, i.e., the representativeness distor-
tion. Together, we have

c1 (w1) =
1 + θ

2 + θ
w1. (B.18)

In other words, since the diagnostic expectation at t = 1 about c2 over-reacts to saving changes
in w1, consumption c1 also over-reacts to saving changes. Based on (B.18), one can then define
the deliberate consumption at t = 0 as in (5). As a corollary to Proposition 1, future diagnostic
expectations increase the current MPC.

Corollary B.5. The current MPC ϕDeliberate
0 strictly increases with the degree of future diagnostic

expectations θ.

7The case studied here corresponds to the “distant memory” J ≥ 2 case in Bianchi, Ilut and Saijo (2023). That
is, the reference point for Eθ

1 [·] is invariant to the shock ∆ and decisions at t = 0. It is instead given by the pre-shock
outcome c̄2 = w̄2 = 0 in Section 1.
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The result can also be easily extended to the concave case in Proposition 2. This is because di-
agnostic expectations are precisely about belief over-reaction to shocks, while there are no mistakes
in the overall expectations level. As a result, Proposition 2 applies.

As discussed in the main text, the essence of the high-MPC result is that the current self
thinks that her future consumption will deviate from what she deems optimal. For the belief-
based distortion considered in Corollary B.5, such perceived dynamic inconsistency comes in the
form of violations of the law of iterated expectations. From (B.17), we can see the violation easily:8

Eθ
0

[
Eθ

1 [c2 (w2)]
]
= (1 + θ)Eθ

0 [c2 (w2)] ̸= Eθ
0 [c2 (w2)] .

Proof of Corollary B.5. From (4) and (B.18), we know λ = − θ
2+θ

. And Corollary B.5 follows
from Proposition 1.

B.7 Hyperbolic Discounting

My framework can also accommodate hyperbolic discounting (e.g. Laibson, 1997; Barro, 1999;
Angeletos et al., 2001; Harris and Laibson, 2001). Let me start with the case with commitment
devices, e.g., the original Laibson (1997) and Angeletos et al. (2001). This case only introduces
mistakes in response to saving changes and will map to Proposition 2.

Specifically, the consumer can put her saving in illiquid assets with costly withdrawals to
avoid over-consumption driven by the present bias. In absence of shocks, she can achieve optimal
consumption through this commitment device. That is, (15) holds. On the other hand, in response
to shocks, the commitment device no longer prevents her from consuming sub-optimally. In this
case, a presently biased future self t’s consumption will be given by

ct (wt) = c̄t + 1 · (wt − w̄t) , (B.19)

for all wt in a neighborhood of w̄t.
9

Given (B.19), I can define the deliberate consumption rule cDeliberate
t (wt) as usual. As a corollary

of Proposition 2, mistakes in future consumption driven by future present biases will necessarily
increase the current MPC.

8The “recent memory” J = 1 case in Bianchi, Ilut and Saijo (2023) instead does not break law of iterated
expectations and does not lead to perceived dynamic inconsistency. This is because, in this case, the reference point
for Eθ

1 [·] moves with decisions at t = 0.
9To derive (B.19). First, consider a small positive deviation of wt away from w̄t. Because u′ (c̄t) = δV ′ (w̄t+1) ,

u′ (c̄t) > βtδV
′ (w̄t+1) for all βt < 1. As a result, present bias will prompt self t to consume out of all the positive

deviation wt − w̄t and (B.19) holds. Second, consider a small negative deviation of wt away from w̄t. Because of
the costly withdrawals from the illiquid assets, self t can only use ct to absorb the negative deviation wt − w̄t and
(B.19) again holds.
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Corollary B.6. Given any strictly concave utility functions u and v, (15), and the hyperbolic-
discounting future consumption rules (B.19), ϕDeliberate

0 ≡ ∂cDeliberate
0 (w̄0)

∂w0
≥ ϕFrictionless

0 , where ϕFrictionless
0

is the frictionless MPC at w̄0.

Now let us turn to the plain vanilla beta-delta model without access to illiquid assets as
a commitment device (Barro, 1999; Harris and Laibson, 2001). Here, hyperbolic discounting
leads to both mistakes in response to saving changes and mistakes in overall consumption levels.
Specifically, the actual future consumption rule of self t is given by

ct (wt) = arg max
ct

u (ct) + δβtVt+1 (R (wt − ct)) , (B.20)

where βt ∈ [0, 1] captures self t’s present bias, which leads to both types of mistakes. Both the
focused high-MPC channel in Proposition 2 (because of future mistakes in response to saving
changes) and the precautionary saving channel in Proposition 3 (because of mistakes in overall
consumption levels) are at force. With CRRA utility, this case maps to the multiplicative case in
Proposition B.1.

Corollary B.7. When u (x) = v (x) = x1−γ

1−γ
, the hyperbolic discounting case in (B.20) is nested

by Proposition B.1. When γ < 1, the current MPC ϕDeliberate
0 increases with future selves’ present

bias, i.e., decreases with each {βt}T−1
t=1 .

Similar to the discussion after Proposition B.1, when the utility function is not that concave
(EIS>1), the high-MPC channel focused in the paper in Proposition 2 dominates and future
mistakes still unambiguously lead to high MPCs. When the utility function is very concave (EIS<
1), the precautionary saving channel may dominate. This is consistent with the result in Maxted
(2022).

Proof of Corollary B.6. This follows directly from (B.19) and Proposition 2.

Proof of Corollary B.7. From (B.20), we have

u′ (ct (wt)) = δβtRV
′

t+1 (R (wt − ct (wt))) . (B.21)

From (A.5), we have

u′ (cDeliberate
t (wt)

)
= δRV

′

t+1

(
R
(
wt − cDeliberate

t (wt)
))

. (B.22)

Comparing (B.21) and (B.22), we have:
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ϕt = β
− 1

γ

t ϕDeliberate
t .

Corollary B.7 then follows directly from Proposition B.1.

B.8 Stochastic Epsilon-mistakes

Here, we study stochastic mistakes that do not bias the consumer’s response to saving changes in a
particular way. That is, λt

i.i.d.∼ N (0, σ2
t ) in (16). Define the deliberate consumption cDeliberate

t (wt)

as usual given (16). Similar to Proposition 2, future stochastic mistakes in response to saving
changes lead to higher current MPCs.

Corollary B.8. If λt
i.i.d.∼ N (0, σ2

t ), ϕDeliberate
0 ≡ ∂cDeliberate

0 (w̄0)

∂w0
increases with the variances in future

selves’ stochastic mistakes, σ2
t , for t ∈ {1, · · · , T − 1} ,

This result means that, even if future consumption’s response may be correct on average,
stochastic mistakes in response to saving changes still increase current MPCs.

Proof of Corollary B.8. This case is not directly nested in Proposition 2, as the actual con-
sumption rule is stochastic. But the proof is essentially unchanged.

The value function in (A.6) is now given by

Vt (wt) = Et [u (ct (wt)) + δVt+1 (R (wt − ct (wt)))] ,

where Et [·] averages over the potential realizations of λs. The deliberate consumption in (A.5) is
unchanged.

In the proof of Proposition 2, the deliberate MPC is still given by (A.12), but (A.13) becomes

Γt = Eλt

[(
ϕDeliberate
t (1− λt)

)2
+
(
1− ϕDeliberate

t (1− λt)
)2

Γt+1δR
2u

′′ (c̄t+1)

u′′ (c̄t)

]

=
δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

1 + δR2Γt+1
u′′(c̄t+1)
u′′(c̄t)

+ σ2
t

(
δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

)2
1 + δR2Γt+1

u′′(c̄t+1)
u′′(c̄t)

.

As a result, Γt increases with
{
σ2
t+k

}T−t−1

k=0
. Corollary B.8 then follows directly from (A.12).
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