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A Quadratic Costs

Suppose that the flow cost of social distancing x is quadratic, c(x) = αx2

2 , so that c′(x) = αx. First,

we verify that the steady-state continuation value for infected agents CI and the individually-optimal

social-distancing level x∗ for susceptible agents are each linear functions of the steady-state continuation

value for susceptible agents CS , namely,

(A.1) CI = a1 + b1CS

(A.2) x∗ = a2 + b2CS .

(To simplify exposition, we suppress the dependence of CI , CS , and x∗ on the steady-state infection

prevalence, which we denote here simply as I.) Equation (A.1) follows directly from equation (7) in the

main text, which states that CI = d+γe−rtCS

γ+r ; so,

a1 =
d

γ + r
(A.3)

b1 =
γe−rt

γ + r
.(A.4)

By the first-order condition (10), c′(x∗) = αx∗ = βI(CI − CS); so, x
∗ = βI

α (CI − CS). This verifies

equation (A.2) with

a2 =
βI

α
a1(A.5)

b2 =
−(1− b1)βI

α
.(A.6)

Next, we verify that the steady-state value of CS for any given infection prevalence I can be determined by

solving a quadratic equation. By equation (8), CS = c(x)+β(1−x)ICI

β(1−x)I+r . Cross-multiplying and substituting

CI = a1 + b1CS and x = a2 + b2CS gives

(A.7) CS [β(1− a2 − b2CS)I + r] =
α

2
(a2 + b2CS)

2 + βI(1− a2 − b2CS)(a1 + b1CS).
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This yields a quadratic equation of form XC2
S + Y CS + Z = 0 where

X = βIb2 +
α

2
b22 − βIb1b2(A.8)

Y = αa2b2 + βI(1− a2)b1 − βIa1b2 − r − βI(1− a2)(A.9)

Z =
α

2
a22 + βI(1− a2)a1.(A.10)

Finally, we provide details on how to compute SSV , the “supply of vaccination required for equilibrium”

shown in Figures 2-3. In a steady-state equilibrium with infection rate I, there is a constant flow of

agents from the infected to the recovered state at rate γI. Since recovered agents have temporary

immunity for tR units of time, the proportion of temporarily-immune agents is γItR in this steady-

state equilibrium. After accounting for infected and temporarily immune agents, and assuming that a

stationary proportion SSV of the population is vaccinated, the proportion of susceptible agents at each

moment in the steady-state equilibrium is S = 1− I(1 + γtR)− SSV . Thus, the flow of agents from the

susceptible to the infected state is SβI(1−x∗). In a steady-state equilibrium, the flow in and out of the

infected state must be the same, so

(A.11) γI = (1− I(1 + γtR)− SSV )βI(1− x∗).

Solving (A.11) allows us to compute SSV .

B Details of Example 1 and Related Figures

We use the quadratic cost framework for the examples and figures in the paper.

B.1 Choice of Parameters:

We set the recovery parameter γ = 1 so that one unit of time is equal to the average length of contagious-

ness for an infected person. As explained in Footnote 7 in the main text, we chose β = 3 and tR = 20 to

be broadly consistent with recent estimates for SARS-CoV2 in 2020.i We set the remaining parameters

d = 1, α = 0.1 (so that c(x) = 0.05x2), tV = tR = 20 and chose r = − ln(0.95) to be consistent with a

discount factor δ = 0.95 per unit time. We used this set of parameters for the computations in Figures

1a and 1b.

We augmented those choices of parameters with additional assumptions about the distribution of

vaccination costs for Figure 2. Specifically, we used a trial-and-error process with the aid of a spread-

iEstimating the underlying biological parameters of the new variants that emerged later during the pandemic is much
more conceptually challenging. For example, Omicron’s effective reproduction number (i.e., its actual success at causing
new infections per infected host) has been estimated as being several times higher than Delta’s after it first emerged (Liu
and Rocklöv (2022)). However, it is unclear how much of Omicron’s relative success at that time was due to its ability to
re-infect hosts who had already recovered from another SARS-CoV-2 strain versus its inherent transmissibility.
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sheet to choose the upper limit cV = .6468 of a uniform distribution U(0, cV ) of vaccination costs to

yield (approximate) steady-state infection rate 1% with endogenous social distancing and endogenous

vaccination. We used a similar trial-and-error process to choose vaccine subsidy .1917 to yield (approx-

imate) steady-state infection rate 0.5% with endogenous social distancing and endogenous vaccination

given that subsidy.

We maintained these assumptions and U(0, .6468) distribution of vaccination costs for the baseline

case in Figure 3a. For the social-distancing subsidy in Figure 3a, we halved the original value of α to

0.05 so that the cost of social-distancing level x with the subsidy is .025x2.

For Figure 3b, we maintained the choices β = 3, tR = tV = 20, d = 1, r = − ln(0.95), and c(x) = .05x2

from the baseline case. In this case, we used a trial-and-error process to identify bounds for a tighter

uniform distribution of vaccination costs to yield (approximate) steady-state infection rate 1% (as in

the baseline case for Figures 2 and 3a) with endogenous social distancing and endogenous vaccination

as well as (approximate) steady-state infection rate 1.1% with a social-distancing subsidy.

B.2 Computations for the Examples and Figures

Equation (A.11) identifies the required supply of vaccination for a steady-state equilibrium at each

infection level.

Given the assumption that vaccination provides immunity for tv units of time, the lifetime cost of

vaccination at discount factor .95 per unit time is cV
1−.95tv . Comparing the lifetime cost of vaccination

to the expected lifetime cost C∗
S(I) in the steady state with infection prevalence I when (initially)

susceptible and unvaccinated gives the threshold cost for vaccination.

(B.1) cV ≤ C∗
S(I)

1− .95tV
.

Thus, the “demand for vaccination” in the steady state with infection prevalence I with uniform distri-

bution of vaccination costs U(0, cV ) is

(B.2) DV (I) =
C∗

S(I)(1− .95tV )

cV
.

With vaccine subsidy sV per vaccination, the lifetime cost of vaccination adjusts to cV −sV
1−.95tv . In addition,

the distribution of vaccination costs net of the subsidy is U(−sV , cV −sV ). Accounting for these changes,

the “demand for vaccination” with subsidy sV in the steady state with infection prevalence I is

(B.3) DV (I) =
C∗

S(I)(1− .95tV ) + sV
cV

.
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B.3 Details of the Spreadsheet containing Computations

The computations for Figures 1a, 2, 3a, and 3b are provided in the Excel spreadsheet “Computations

for Figures 1a, 2, 3a, and 3b.” There is one separate worksheet of data and computations for each of

Figure 1, Figure 2a, and Figure 3a and two separate worksheets for Figure 3b. Each of these worksheets

follows the same format with one row per infection rate.

The entries in these worksheets are as follows. Column A contains the fixed parameter values.

Column D lists the conjectured steady-state infection prevalence. Column E contains the associated

proportion of recently recovered and currently immunized agents. The right-most columns find the roots

of the quadratic equation given the parameters, as defined by (A.8), (A.9), and (A.10). Column F

identifies the relevant root of the quadratic equation as the steady-state-cost value for susceptible agents

CS . Columns G and H contain the associated values of costs CR and CI . Given these values, Column

I contains the optimal steady-state level of social distancing for a susceptible agent, which follows from

the fixed parameter values and the cost values in Columns F through H. Column J contains the flow

rate of new infections. Column K contains the flow rate of recoveries, where these values correspond to

the relevant portions of equations (1) and (2) from the main text.

The computations in Columns A through K assume that no one is vaccinated, so the susceptible

proportion is simply 1 minus the proportion who are either infected or immune. Column L uses the

following logic to identify the vaccination proportion that would equate the flow rate of new infections and

recoveries at the given infection prevalence: The difference in the flow rates of infection absent vaccination

is “Column J - Column K”, so dividing by “Column J” gives the proportion of new infections that would

have to be avoided by vaccination to equate these flow rates. Multiplying this fraction (“Column J” -

“Column K”)/“Column J”) by the susceptible proportion (i.e. 1 - Column D - Column E) gives the

vaccination rate required for a steady-state equilibrium with this infection prevalence.

It is also possible to calculate the vaccination rate required for a steady-state equilibrium (as a func-

tion of underlying parameters of the model) from the steady-state condition. In particular,“Proportion

Susceptible” * “Flow Rate of New Infections” = “Proportion of Recoveries”, or

(B.4) (1− V − I − tR)N = γI,

where V is the proportion who are vaccinated, I is the proportion infected, γtRI is the proportion

immune, N is the flow rate of new infections (i.e. N = βI(1− V − I − γtRI), and γI is the proportion

of infections per unit time in a steady state. Solving (B.4) for V gives

(B.5) V = 1− I − γtRI −
γ

β(1− x)
.

Column M of the worksheet for Figure 1a, Column N of the worksheets for Figures 3a and 3b,
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and Column O of the worksheet for Figure 2 uses (B.5) to compute the level of vaccination required

for a steady-state equilibrium with infection prevalence given by the value in Column D of that row.

These computations match the values in Column L, verifying that these two methods for computing the

required vaccination level are equivalent.

Column M of the worksheets for Figures 2, 3a, and 3b uses (B.3) to compute the demand for vacci-

nation (i.e. the proportion of susceptible agents who would adopt vaccination) at the given stationary

infection prevalence. Column N of the worksheet for Figure 2 recomputes the demand for vaccination

given a subsidy for vaccination.

The relevant equilibrium outcomes are highlighted in the top rows of each table. In the table la-

beled “Figure 1a”, Row 1 highlights the (approximate) equality of the flow rate of new infections and

recoveries at stationary infection rate 2.226% without vaccination, while Row 2 highlights the fact that a

36.69% vaccination rate is required for an equilibrium with stationary infection rate 1% given endogenous

vaccination.

In the table labeled “Figure 2”, Row 1 highlights the (approximate) equality of supply and demand

for vaccination at stationary infection rate 1% given the parameters listed above, while Row 2 highlights

the approximate equality of supply and demand for vaccination at stationary infection rate 0.5% with

the vaccination subsidy identified above.

In the table labeled “Figure 3a”, Row 2 highlights the (approximate) equality of supply and demand

for vaccination at stationary infection rate 0.825% given the original parameters except for a change in

the value of α to .05 after accounting for a social-distancing subsidy.

In the table labeled “Figure 3b, No Subsidy”, Row 1 highlights the (approximate) equality of supply

and demand for vaccination at stationary infection rate 1% given the original parameters except for a

change in the lower and upper limits of the uniform distribution of vaccination costs.

In the table labeled “Figure 3b, Subsidy”, Row 1 highlights the (approximate) equality of supply

and demand for vaccination at stationary infection rate 1.1% given the original parameters except for a

change in the lower and upper limits of the uniform distribution of vaccination costs and a reduction in

the value of α to .05397.

B.4 Details of the Spreadsheets for Producing Figures 1a, 2, 3a, and 3b

The Excel spreadsheet “Figures” uses results from the “Technical Appendix” spreadsheet to produce

Figures 1, 2, 3a, and 3b. This spreadsheet includes one table labeled “Data” with the relevant values

from the other spreadsheet and separate worksheets for each of the figures themselves.

Columns C and D of the worksheet “Figures / Data” contain data from Columns J and K of the

worksheet “Technical Appendix / Figure 1”.
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Columns G through I of the worksheet “Figures / Data” contain data from Columns L through N of

the worksheet “Technical Appendix / Figure 2”.

Columns L and M in the worksheet “Figures / Data” repeat the data from Columns G and H in

that same worksheet. Columns N and O in the worksheet “Figures / Data” contain data from Columns

L and M of the worksheet “Technical Appendix / Figure 3a.”

Columns R and S in the worksheet “Figures / Data” contain data from Columns L and M ofthe

worksheet “Technical Appendix / Figure 3b No Subsidy.” Columns T and U in the worksheet “Graphs /

Data” contain data from Columns L and M of the worksheet “Technical Appendix / Figure 3b Subsidy.”

B.5 Details of the Spreadsheet for Figure 1b

The Excel spreadsheet ”Computations for Figure 1b” generates the results and produces the graph for

Figure 1b.

We used a straightforward algorithm to estimate convergence of an epidemic to steady-state equilib-

rium. Our computations are shown in a series of worksheets titled “Sheet 1” through “Sheet 8”. We

consider a 150-period model where each period is divided into 50 equal length segments of time with

period-length-adjusted parameters and discounting structure derived from the parameters of Example

1.

In each iteration of the algorithm, we assume an initial infection rate of .01% and use a conjectured

time series for CS and CI . Our analysis for each iteration proceeds in two steps. In the first step

for a given iteration, we compute the infection trajectory for the current iteration with the following

procedure. Starting at time t = 0, we compute the individually-optimal level of social distancing for

susceptible people at time t given the current infection rate and the anticipated values for CS and CI

at time t + .02, then use that level of social distancing to compute the resulting infection rate at time

t+ .02. Iterating this process forward from time t = 0 to time t = 150, we trace the infection trajectory

induced by the conjectured time-series values for CI and CS .

In the second step of each iteration, we work backwards from period 150 to compute the realized

time-series values for CS and CI given the infection trajectory and social-distancing pattern that was

identified in the first step of analysis. We start in period 150 by assuming that the steady-state values

for CS and CI will be realized in period 150.02. Then at each time t, we compute realized expected

costs for each state from the level of social distancing at time t and the computed expected costs for

time t+ .02. Iterating this processbackwards from time t = 150 to time t = 0, we identify the full time

series of induced expected costs for this iteration of the algorithm.

The only difference between one iteration of the algorithm to the next is the choice of the conjectured

time series for CS and CI . In the very first iteration, we assume constant values for CS and CI equal to
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0 at each point in time from t = 0 to t = 150. Then for iteration n+ 1, we use the realized time-series

values for CS and CI in iteration n as the approximations for the conjectured time series values for CS

and CI in iteration n+ 1.

We present each iteration of these computations as a separate sheet in the spreadsheet. The algorithm

converged, with time series of infection prevalence as illustrated in Figure 1b.

C Derivation of the Bellman Equation

Here we show how the continuous-time dynamic programming problem ((5) in the paper) is derived from

a discrete-time problem. At any time t, we have

(C.1) CI(t) = d△+ γ△(
1

1 + r△
)CR(t+△) + (1− γ△)(

1

1 + r△
)CI(t+△),

where △ > 0 is a small time interval. Since susceptible agents choose to minimize the expected present

value of costs incurred over the rest of their lifetime, where these costs come from the cost of social

distancing and the cost of being infected, we have

(C.2) CS(t) = min
x∈[0,1]

{c(x)△+ β(1− x)I△(
1

1 + r△
)CI(t+△) + (1− β(1− x)I△)(

1

1 + r△
)CS(t+△)}.

In (C.2), c (x)△ is the cost of social distancing and β (1− x) I△ is the probability of acquiring an

infection over the time period from t to t+△.

From (C.1), we get

CI(t)− CI(t+△) = d△+ γ△(
1

1 + r△
)CR(t+△)− (γ + r)△(

1

1 + r△
)CI(t+△).

Divide by △ and take limits as △ → 0. This gives us

(C.3) −C ′
I(t) = d+ γCR(t)− (γ + r)CI(t),

where CR(t) = e−rtRCS(t+ tR).

Similarly, from (C.2), we get

CS(t)−CS(t+△) = min
x∈[0,1]

{c(x)△+β(1−x)I△(
1

1 + r△
)CI(t+△)−(β(1−x)I+r)△(

1

1 + r△
)CS(t+△)}.

Dividing by △ and taking limits as △ → 0 yields the continuous time Bellman equation (Hamilton-

Bellman-Jacobian equation):

(C.4) −C ′
S(t) = min

x∈[0,1]
{c(x) + β(1− x)ICI(t)− (β(1− x)I + r)CS(t)}.

In a steady state, C ′
I(t) = C ′

S(t) = 0. Let C∗
S(I), C

∗
I (I), and C∗

R(I), respectively, denote the steady
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state expected lifetime cost for susceptible, infected, and newly recovered agents. We have

C∗
R(I) = e−rtRC∗

S(I).

From (C.3), we get

0 = d+ γC∗
R(I)− (γ + r)C∗

I (I),

which yields

C∗
I (I) =

d

γ + r
+

γ

γ + r
C∗

R(I).

Similarly, (C.4) gives, in a steady state,

0 = min
x∈[0,1]

{c(x) + β(1− x)IC∗
I (I)− (β(1− x)I + r)C∗

S(I)}.

From this, we obtain

C∗
S(I) = min

x∈[0,1]

{
c(x) + β(1− x)IC∗

I (I)

β(1− x)I + r

}
.

D Details of Example 2

We chose β = 3, γ = 1, r = − ln(0.95), d = 1, tR = 100, c(x) = 0.05x2, and V = 0. The solution to the

individual optimization problem is a solution x(I) to a quadratic equation. The steady-state condition

is

(D.1) β(1− x)(1− I − γtRI) = γ.

Solving for x gives

(D.2) x =
303I − 2

3(101I − 1)
.

The steady-state equilibrium solves x(I) and (D.2) simultaneously, which pinpoints the steady-state

infection level I = 0.00610 and associated level of social distancing x = 0.131.

By contrast, the objective function for the social planner is

(D.3) I(x)
d

r
+ [1− (1 + γtR)I(x)]

0.05x2

r
.

Solving (D.1) for I gives

(D.4) I(x) =
2− 3x

303(1− x)
.

Combining (D.3) and (D.4), the planner’s objective function (in expected cost) is minimized at x = 0.104.

That is, there is too much social distancing in the steady-state equilibrium relative to the social
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optimum.

E A Property of the Function CS (I, x)

Let x∗(I) denote the individually-optimal social-distancing level for susceptible agents given stationary

infection prevalence I. Here we show that ∂CS(I,x∗(I))
∂I > 0 whenever x∗(I) < 1.ii From (11) in the paper,

we have

(E.1) CS (I, x) =
c (x) + β (1− x) I

(
d

γ+r

)
β (1− x) Ik + r

,

where k = 1− γe−rtI

γ+r . Differentiating (E.1),

(E.2)
∂CS (I, x)

∂x
=

1

β (1− x) Ik + r

c′ (x)− βI
(

rd
γ+r − c (x) k

)
β (1− x) Ik + r

 .

By the first-order condition for x∗(I) to be a minimum, ∂CS(I,x∗(I))
∂x = 0. Since c′(x∗(I)) > 0, this

requires by (E.2) that

(E.3)
rd

γ + r
> c (x∗(I)) k.

From (E.1) we now obtain as desired that

∂CS (I, x)

∂I
=

β (1− x)

(β (1− x) Ik + r)
2

[
rd

γ + r
− c (x) k

]
> 0

at x = x∗(I).

iiFor sufficiently large I, susceptible agents find it optimal to completely isolate themselves, choosing x∗(I) = 1 and

having expected lifetime costs CS(I, 1) =
c(1)
r

. However, no steady-state equilibrium can have such a high infection level,
since full isolation by susceptible agents causes the flow of new infections to fall to zero, a contradiction.
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