Online Appendix Central Bank Credibility and Fiscal Responsibility Jesse Schreger, Pierre Yared and Emilio Zaratiegui January 2, 2024

Proof of Lemma [1](#page-0-0)

Necessity follows from our discussion in the text. Sufficiency follows by using $\left\{ \left\{ \tau_{t},T_{t},P_{t},C_{t},G_{t},N_{t}\right\} _{t=0,1},\right.$

 B, i given [\(8\)](#page-0-1) and [\(9\)](#page-0-2) to construct the values of $\{C_{j,t}, N_{j,t}, W_t, P_{j,t}\}_{t=0,1}$ that satisfy all optimality conditions and budget constraints. \blacksquare

Proof of Lemma [2](#page-0-3)

Step 1. Let us consider how G_1 is determined. The relaxed problem is strictly concave which means that the first order condition defines the unique global optimum. Equation [\(18\)](#page-0-4) implies that C_1 and G_1 are negatively related, which means that $N_1 = C_1 + G_1$ is strictly increasing in G_1 . Therefore, the left hand side of (23) is decreasing in G_1 and the right hand side of (23) increasing in G_1 . Since the right hand side of (23) is increasing in *B*, this implies that G_1 is decreasing in B .

Step 2. Analogous argument to step 1 imply that G_1 is decreasing in λ .

Step 3. Let us consider how P_1 is determined. Substitute (20) into (23) to achieve

$$
\left[-(1 - \mu) (C_1 + G_1)^{\varphi} G_1 + \mu \frac{1}{G_1} \right] B = \frac{\lambda}{1 - \lambda} H'(P_1) P_1^2.
$$
 (A.1)

From step 1, higher *B* is associated with lower *G*1, which means that the left hand side of (*[A.](#page-0-7)*1) is increasing in *B*. Therefore, since the right hand side of $(A.1)$ $(A.1)$ $(A.1)$ is increasing in P_1 , this means that P_1 is increasing in B .

Step 4. To consider how P_1 changes with respect to λ , we first establish that $P_1 > 1$. Suppose by contradiction that $P_1 \leq 1$. Consider a perturbation that increases P_1 in order to increase G_1 by some $\varepsilon > 0$ arbitrarily small. The change in welfare taking into account [\(18\)](#page-0-4) is

$$
-(1-\mu)\frac{1}{C_1} + \mu\frac{1}{G_1}.
$$

We can establish that $G_1/C_1 < \mu/(1-\mu)$, implying that this term is positive and that the perturbation raises welfare. To see why, note that [\(18\)](#page-0-4) implies that

$$
G_1^{1+\varphi} \frac{C_1}{G_1} \left(\frac{C_1}{G_1} + 1 \right)^{\varphi} = 1.
$$
 (A.2)

Suppose by contradiction that $C_1/G_1 \leq (1 - \mu)/\mu$. Taking into account that [\(9\)](#page-0-2) and [\(20\)](#page-0-6) implies that $G_1 < \mu \left(1 - \mu\right)^{-\frac{1}{1 + \varphi}},$ it follows that

$$
G_1^{1+\varphi} \frac{C_1}{G_1} \left(\frac{C_1}{G_1} + 1 \right)^{\varphi} < \mu^{1+\varphi} \left(1 - \mu \right)^{-1} \left(\frac{1-\mu}{\mu} \right) \left(\frac{1}{\mu} \right)^{\varphi} = 1,
$$

which violates ([A.](#page-0-8)2). Therefore, $G_1/C_1 < \mu/(1-\mu)$ and the perturbation strictly increases welfare. Therefore, $P_1 > 1$ for all $\lambda \in (0, 1)$.

Consider a central bank with hawkishness λ' choosing $P_1(\lambda')$ and another central bank with hawkishness $\lambda'' > \lambda'$ choosing $P_1(\lambda'')$. For both central banks to be weakly prefering their policy choice, it is necessary that they weakly prefer to not mimic each other, which means that

$$
\left(\frac{\lambda''}{1-\lambda''}-\frac{\lambda'}{1-\lambda'}\right)\left(H(P_1(\lambda')-H(P_1(\lambda''))\right)\geq 0
$$

Since $\lambda'' > \lambda'$ and $P_1(\lambda')$ and $P_1(\lambda'')$ both exceed 1, with $H(P)$ increasing for $P > 1$, it follows that this condition can only hold if $P_1(\lambda') \ge P_1(\lambda'')$. Therefore, P_1 decreases in λ .

Proof of Lemma [3](#page-0-9)

Proof of part (i). If $B = 0$ then $G_1 = T$ and $G_0 = T$, and the first best allocation conditional on $G_0 = T$ can be implemented with $P_0 = 1$.

Proof of part (ii) Suppose that $\forall B/P_1 \in (0, v)$ for some $v > 0$ arbitrarily small. We establish this result in two steps.

Step 1. We first establish that $P_0 \neq 1$. Consider a perturbation that increases P_0 by some $\varepsilon > 0$ arbitrarily small. Using implicit differentiation taking into account [\(16\)](#page-0-10), [\(17\)](#page-0-4), and [\(24\)](#page-0-11), we can derive the ensuing change in C_0 , G_0 , and N_0 . The change in central bank welfare from the perturbation taking into account [\(17\)](#page-0-4) is

$$
(1 - \lambda) \left(-\left(1 - \mu\right) N_0^{\varphi} + \mu \frac{1}{G_0} \right) \frac{\partial G_0}{\partial P_0} - \lambda H'(P_0). \tag{A.3}
$$

Equations [\(16\)](#page-0-10), [\(17\)](#page-0-4), and [\(24\)](#page-0-11) imply that $\frac{\partial G_0}{\partial P_0} > 0$. Moreover, analogous reasoning to Step 4 in the proof of Lemma [2](#page-0-3) taking into account that $P_0 = 1$ implies that $-(1 - \mu) N_0^{\varphi} + \mu \frac{1}{G_0} > 0$. Taking into account that $H'(1) = 0$, it follows that the sign of $(A.3)$ $(A.3)$ $(A.3)$ is strictly positive.

Step 2. We next establish that $P_0 > 1$. We first show that constraint [\(17\)](#page-0-4) is equivalent to

$$
C_0 (C_0 + G_0)^{\varphi} \le 1 + \frac{\alpha}{\sigma - 1} (P_0 - 1) P_0 . \tag{A.4}
$$

Suppose that the solution to the relaxed problem admits (*[A.](#page-1-1)*4) as a strict inequality. Then necessarily, the solution admits $P_0 = 1$. Consider a perturbation which increases G_0 by some ε arbitrarily small and which also increases C_0 so as to satisfy (24) . The change in welfare is

$$
(1 - \lambda) \left(\left(\frac{1}{C_0} - (1 - \mu) N_0^{\varphi} \right) \frac{\partial C_0}{\partial G_0} - (1 - \mu) N_0^{\varphi} + \mu \frac{1}{G_0} \right) - \lambda H'(P_0). \tag{A.5}
$$

Given $P_0 = 1$, ([A.](#page-1-1)4) which holds as a strict inequality, and the fact that $\frac{\partial C_0}{\partial G_0} > 0$, it follows that (*[A.](#page-1-2)*5) is strictly larger than

$$
(1 - \lambda) \left(- (1 - \mu) \frac{1}{C_0} + \mu \frac{1}{G_0} \right). \tag{A.6}
$$

Observe that as $B/P_1 \to 0$, satisfaction of [\(24\)](#page-0-11) requires $C_0 \to C_1$ and $G_0 \to T$. Using this observation, it follows that satisfaction of [\(24\)](#page-0-11) requires $C_0/G_0 > (1 - \mu)/\mu \ \forall B/P_1 \in (0, \nu)$ for some $v > 0$ arbitrarily small. Thus, analogous reasoning to Step 4 in the proof of Lemma [2](#page-0-3) implies that $(A.6)$ $(A.6)$ $(A.6)$ is strictly positive. Therefore, the solution to the relaxed problem is equal to the solution to constrained problem.

Now suppose by contradiction that the solution admits $P_0 < 1$. Consider a perturbation that increases P_0 to 1, holding C_0 and G_0 constant. This perturbation satisfies all constraints of the relaxed problem and strictly increases welfare. Therefore, $P_0 \ge 0$ and by Step 1, $P_0 > 0$.

Proof of part (iii). This follows from analogous reasoning to Step 4 in the proof of Lemma $2.$

Proof of Proposition [1](#page-0-12)

Proof of part (i). Take $\lambda \to 1$, where $\underline{G}_1(\lambda) \to 0$, $P_0 \to 1$, $P_1 \to 1$. Consider the program of the fiscal authority which can be rewritten as

$$
\max_{C_0, G_0, N_0, C_1, G_1, N_1} \left\{ \begin{array}{l} (1 - \mu) \left(\log C_0 - \frac{N_0^{1 + \varphi}}{1 + \varphi} \right) + \mu \log G_0 \\ (1 - \mu) \left(\log C_1 - \frac{N_1^{1 + \varphi}}{1 + \varphi} \right) + \mu \log G_1 \end{array} \right\}
$$
\ns.t.\n
$$
C_t + G_t = N_t \text{ for } t = 0, 1,
$$
\n
$$
C_t N_t^{\varphi} = 1 \text{ for } t = 0, 1, \text{ and}
$$
\n
$$
T - G_0 \qquad T - G_1 \qquad (A.8)
$$

$$
\frac{T - G_0}{C_0} + \frac{T - G_1}{C_1} = 0.
$$
\n(A.8)

Observe that (*[A.](#page-2-0)*8) is equivalent to a weak inequality constraint

$$
\frac{T - G_0}{C_0} + \frac{T - G_1}{C_1} \ge 0.
$$
\n(A.9)

This is because the solution in the absence of this constraint admits

$$
C_t N_t^{\varphi} = \frac{1 - \mu}{\mu} G_t N_t^{\varphi} = 1,
$$

which is the first best allocation, which violates (*[A.](#page-2-1)*9). Therefore, the solution to the relaxed problem with (*[A.](#page-2-1)*9) is equivalent to the solution to the constrained problem. Observe that (*[A.](#page-2-1)*9) can be rewritten as

$$
C_1 (T - G_0) + C_0 (T - G_1) \ge 0,
$$
\n(A.10)

which is a globally convex constraint. Let ψ correspond to the Lagrange multiplier on $(A.10)$ $(A.10)$, and consider the relaxed problem that ignores (*[A.](#page-2-3)*7). First order conditions yield

$$
\frac{1}{C_0} - (C_0 + G_0)^{\varphi} + \psi (T - G_1) = 0
$$

$$
\frac{1}{C_1} - (C_1 + G_1)^{\varphi} + \psi (T - G_0) = 0
$$

$$
\frac{\mu}{1 - \mu} \frac{1}{G_0} - (C_0 + G_0)^{\varphi} - \psi C_1 = 0
$$

$$
\frac{\mu}{1 - \mu} \frac{1}{G_1} - (C_1 + G_1)^{\varphi} - \psi C_0 = 0
$$

Since the program is concave and the constraint set convex, the solution is unique. Observe that $G_0 = G_1 = T$ satisfies the first order conditions so that it constitutes the solution. Moreover, condition (*[A.](#page-2-3)*7) is satisfied, so that the solution to the relaxed problem is the solution to the constrained problem. Therefore, $B/P_1 = 0$. The statement of the proposition follows by continuity given that $B/P_1 \geq 0$.

Proof of part (ii). As $\lambda \to 0$, $\underline{G}_1(\lambda) \to T$, which means that $B/P_1 \to 0$. The statement of the proposition follows by continuity given that $B/P_1 \geq 0$.

Proof of Proposition [2](#page-0-13)

The equilibrium value of B/P_1 is inversely proportional to the value of G_1 . Therefore, we establish this result by focusing on the value of G_1 . Define $G_1^*(\lambda)$ as the solution to the unconstrained problem of the fiscal authority. Observe that this value represents the solution to the below unconstrained problem:

$$
\max_{G_1} \{ \log G_0^*(G_1, \lambda) + \log G_1 \},\tag{A.11}
$$

where $G_0^*(G_1, \lambda)$ denotes the best response of the date 0 monetary authority with hawkishness λ . First order conditions yield

$$
\frac{1}{G_0} \frac{\partial G_0^*(G_1, \lambda)}{\partial G_1} + \frac{1}{G_1} = 0.
$$
\n(A.12)

To determine $G_0^*(G_1, \lambda)$, note that the date 0 central banks' problem (25) can be represented as

$$
\max_{G_0} \left\{ \eta \left(\lambda \right) \log G_0 - \frac{\left(\frac{1}{T - G_1} \left(G_0 - T \right) - 1 \right)^2}{2} \right\}
$$

for

$$
\eta(\lambda) = \frac{1}{\kappa} \frac{1-\lambda}{\lambda} \left(\frac{\alpha}{\sigma - 1}\right)^2,
$$

Observe that the function $\eta(\lambda)$ is a strictly decreasing function of λ . Define

$$
\lambda^{**} = \left(1 + \kappa \left(\frac{\sigma - 1}{\alpha}\right)^2\right)^{-1},\tag{A.13}
$$

and observe that $\eta(\lambda^{**}) = 1$. The first order condition implies that

$$
0 = G_0^2 - G_0 (2T - G_1) - \eta (\lambda) (T - G_1)^2.
$$
 (A.14)

Implicit differentiation of $(A.14)$ $(A.14)$ yields

$$
\frac{\partial G_0^*(G_1, \lambda)}{\partial G_1} = -\frac{G_0 + \eta(\lambda) \, 2 \, (T - G_1)}{G_1 + 2 \, (G_0 - T)} < 0. \tag{A.15}
$$

After substitution, (*A.*[12\)](#page-3-1) can be rewritten as

$$
\frac{1}{G_1} \left(-\frac{1 + \eta(\lambda) 2 (T - G_1) G_0^{-1}}{1 + 2 (G_0 - T) G_1^{-1}} + 1 \right) = 0.
$$
\n(A.16)

Observe that $(A.16)$ $(A.16)$ is satisfied for $G_1 = T$. Thus, $G_1 = T$ is a local maximum or a local minimum in the date 0 fiscal authority's problem.

Using these observations, we prove the proposition in three steps. First, we establish that if $\lambda < \lambda^{**}$, then $G_1^*(\lambda) < T$ and is strictly increasing in λ . Second, we establish that if $\lambda \geq \lambda^{**}$, then $G_1^*(\lambda) = T$. Finally, we combine these results with the observation that $\underline{G}_1(\lambda)$ is strictly decreasing in λ to complete the proof.

Step 1. We establish that if $\lambda < \lambda^{**}$, then $G_1^*(\lambda) < T$ and is strictly increasing in λ .

Step 1a. We establish that $G_1^*(\lambda) < T$. Suppose by contradiction that $G_1^*(\lambda) = T$. Consider the necessary second order condition to the date 0 fiscal authority's problem by differentiating $(A.16)$ $(A.16)$ with respect to G_1 , taking into account that the term in parentheses in $(A.16)$ evaluated at $G_1 = T$ is zero and that $\frac{\partial G_0^*(T,\lambda)}{\partial G_1} = -1$:

$$
\frac{1}{G_1} \left(-\partial \frac{\left(\frac{1 + \eta(\lambda)2(T - G_1)G_0^{-1}}{1 + 2(G_0 - T)G_1^{-1}} \right)}{\partial G_1} + \partial \frac{\left(\frac{1 + \eta(\lambda)2(T - G_1)G_0^{-1}}{1 + 2(G_0 - T)G_1^{-1}} \right)}{\partial G_0} \right) < 0. \tag{A.17}
$$

Inequality $(A.17)$ $(A.17)$ evaluated at $G_0 = G_1 = T$ yields

$$
\frac{2}{T^2} \left(\eta \left(\lambda \right) - 1 \right) < 0. \tag{A.18}
$$

However, (A.[18\)](#page-4-1) cannot hold if $\lambda < \lambda^{**}$ since $\eta(\lambda) > 1$. Therefore, $G_1 = T$ is a local minimum if $\lambda < \lambda^{**}$, which means that $G_1^*(\lambda) < T$.

Step 1b. We establish that $G_1^*(\lambda) < T$ is uniquely determined. Note that $(A.16)$ $(A.16)$ taking into account that $G_1 < T$ can be rewritten as

$$
\eta(\lambda) = \frac{G_0^2 - TG_0}{TG_1 - G_1^2}.
$$
\n(A.19)

Combining (*A.*[14\)](#page-3-0) and (*A.*[19\)](#page-4-2), we achieve:

$$
G_0 = \eta(\lambda) (2G_1 - T), \qquad (A.20)
$$

which implies that since $G_0 > 0$, it follows that $G_1 > T/2$. Substitution of $(A.20)$ $(A.20)$ into $(A.19)$ $(A.19)$ yields an equation defining *G*1:

$$
(4\eta (\lambda) + 1) G_1^2 - (4\eta (\lambda) + 3) T G_1 + (\eta (\lambda) + 1) T^2 = 0.
$$
 (A.21)

Observe that the left hand side of $(A.21)$ $(A.21)$ is convex in G_1 , exceeds 0 if $G_1 = 0$ and $G_1 = T$ (since $\lambda < \lambda^{**}$, and is below 0 for $G_1 = T/2$. It thus follows that there is a unique value of $G_1 > T/2$ that satisfies (*A.*[21\)](#page-4-4).

Step 1c. Equation $(A.21)$ $(A.21)$ defines $G_1^*(\lambda)$. Given Step 1b, observe that from the convexity of the left hand side of $(A.21)$ $(A.21)$, it follows that the the left hand side of $(A.21)$ is strictly increasing in G_1 at $G_1 = G_1^*(\lambda)$, so that

$$
(4\eta(\lambda) + 1) 2G_1 - (4\eta(\lambda) + 3)T > 0.
$$
 (A.22)

Implicit differentiation of $(A.21)$ $(A.21)$ with respect to λ yields

$$
\frac{\partial G_1^*(\lambda)}{\partial \lambda} = -\eta'(\lambda) \frac{(2G_1 - T)^2}{(4\eta(\lambda) + 1)2G_1 - (4\eta(\lambda) + 3)T} > 0,
$$
\n(A.23)

where we have applied $(A.22)$ $(A.22)$ and the fact that $G_1 > T/2$ to sign $(A.23)$ $(A.23)$. This establishes $G_1^*(\lambda)$ is strictly increasing in λ for $\lambda < \lambda^{**}$.

Step 2. We now establish that if $\lambda \geq \lambda^{**}$, then $G_1^*(\lambda) = T$.

Step 2a. We first establish that if $\lambda = \lambda^{**}$, then $G^*_{1}(\lambda) = T$. Suppose that this were not the case and that the solution admits $G^*_{1}(\lambda) < T$. Equation $(A.21)$ $(A.21)$ then defines $G^*_{1}(\lambda)$ and the same arguments as in Step 2b imply that $G^*_1(\lambda)$ is uniquely determined. Observe that if $\lambda = \lambda^{**}$, then $G_1 = T$ solves $(A.21)$ $(A.21)$, contradicting the fact that the solution admits $G_1^*(\lambda) < T$. Therefore, $G_1^*(\lambda) = T$.

Step 2b. We now establish that $G^*_1(\lambda) = T$ for all $\lambda > \lambda^{**}$. Consider the contradiction assumption that $G^*_1(\lambda') = \hat{G}_1 < T$ for some $\lambda' > \lambda^{**}$. Weak optimality for the fiscal authority at date 0 conditional on $\lambda = \lambda'$ requires

$$
\log\left(G_0^*\left(\hat{G}_1\right),\lambda'\right) + \log\hat{G}_1 \ge 2\log T. \tag{A.24}
$$

Strict optimality for the fiscal authority at date 0 conditional on $\lambda = \lambda^{**}$ requires

$$
2\log T > \log \left(G_0^* \left(\hat{G}_1 \right), \lambda^{**} \right) + \log \hat{G}_1. \tag{A.25}
$$

Combining (*A.*[24\)](#page-5-0) and (*A.*[25\)](#page-5-1) we achieve

$$
\log\left(G_0^*\left(\hat{G}_1\right),\lambda'\right) > \log\left(G_0^*\left(\hat{G}_1\right),\lambda^{**}\right). \tag{A.26}
$$

Implicit differentiation of $(A.14)$ $(A.14)$ yields

$$
\frac{\partial G_0^*(G_1,\lambda)}{\partial \lambda} = -\frac{1}{\lambda^2} \frac{(T - G_1)^2}{G_1 + 2(G_0 - T)} < 0,
$$

which contradicts (A.[26\)](#page-5-2). Therefore, $G_1^*(\lambda) = T$ for all $\lambda > \lambda^{**}$.

Step 3. Observe that the constrained problem of the first authority at date 1 implies that the equilibrium value of G_1 must satisfy

$$
G_1 = \max \left\{ G_1^*(\lambda), \underline{G}_1(\lambda) \right\}.
$$

Observe that $\lim_{\lambda\to 0} G_1(\lambda) = T > \lim_{\lambda\to 0} G_1^*(\lambda)$ (from step 1a). Moreover, $\lim_{\lambda\to 1} G_1(\lambda) <$ $T < \lim_{\lambda \to 1} G_1^*(\lambda) = T$ (from step 2b). Therefore, $G_1^*(\lambda) = G_1(\lambda)$ for some interior value of λ . Moreover, since $G_1^*(\lambda)$ and $\underline{G}_1(\lambda)$ are both monotonic, this interior point is unique, and can be labeled by λ^* . It follows that $G_1 = \underline{G}_1(\lambda)$ if $\lambda < \lambda^*$, with G_1 decreasing in λ if $\lambda < \lambda^*$. Moreover $G_1 = G_1^*(\lambda)$ if $\lambda > \lambda^*$, with G_1 strictly increasing in λ for $\lambda \in (\lambda^*, \lambda^{**})$ and $G_1 = T$ for $\lambda > \lambda^{**}$. \blacksquare