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A The model economy

Household problem. Households consume a composite good C made of varieties ci with
a constant elasticity of substitution η > 1

Ct =

(∫ 1

0

(Aitcit)
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) η
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where Ait denote shocks to preferences. The households maximize utility
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where α > 0 is a labor disutility parameter and ρ > 0 is the discount factor, subject to the
inter-temporal budget constraint
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where Rt denotes the nominal interest rate, Qt = exp(−
∫ t

0
Rsds) is the discount factor, Wt is

the nominal wage rate, τ` a labor income tax, Πt the firms’ profits, τt a lump-sum transfer, pit
the nominal price of variety i and P is the price index. The household first order conditions
yield

Ct : e−ρtC−εt − λQtPt = 0 (19)
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Ht : − e−ρtα +QtWt (1 + τ`)λ = 0 (21)
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1
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where λ is the lagrange multiplier of the intertemporal budget constraint.
Using equation (19) and equation (20)
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Rearranging and differentiating equation (22) with respect to time we obtain
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where Q̇t = −QtRt. Assume a monetary policy Mt = M0 exp(µt). Then simplifying the
above expression

ρ+ µ =Rt −
Ṙt

Rt

which is solved by Rt = ρ+ µ, all t. This implies, using equation (22)
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1
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.

From equation (21), the nominal wage rate is

Wt = exp(µt)
α

1 + τ`
M0(ρ+ µ),

with growth rate equal to µ. Using equation (20) and equation (21)
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where the second line uses the definition of profit-maximizing price and the fact Ait = Z1−ζ
it .

Integrating over varieties,
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which gives aggregate consumption as a function of the distribution of price gaps m̂(x, t) and
prices. The labor subsidy is assumed to offset markups. Further, using the aggregate price
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index implied by equation (23) we obtain
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where mct is short for KEζW 1−ζ . Equation (25) gives an expression for real marginal costs
as a function of the distribution of price gaps m̂(x, t).

The firm’s profit function. The technology for firm i is Cobb-Douglas yi = (hi/Zi)
1−ζmζ

i

where hi are units of labor and mi are units of energy input. The marginal cost (and average

cost) of producing yi is mci = K · Eζ (W · Zi)1−ζ where K = ζ−ζ · (1− ζ)−(1−ζ). The profit
function is
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the first line uses equation (23), the second factorizes marginal cost out, the third uses
the assumption that Ai = Z1−ζ

i and the fourth rearranges. The flexible-price optimum is
p∗i = η

η−1
mci. Let x ≡ log pi/p

∗
i denote the “price gap”, namely the distance between the

current price and the static profit maximizing price. Expressing profits as a function of the
price gap gives
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where mct, again, is short for KEζ
tW

1−ζ
t . It is worth noting that all time dependent terms

of real profits can be computed from the distribution of price gaps using equation (24) and
equation (25). Notice how the assumption Ai = Z1−ζ

i makes the profit function independent
of the productivity shock, a feature that allows us to reduce the state space of the problem
to a single scalar variable x. We define the flow cost function that represents forgone profits
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due to price gap x along a transition and in steady-state as

F (x, t) ≡ 1− Π(x, t)

Πss(0)
, F (x) ≡ 1− η

[
ex − η − 1

η

]
e−ηx,

where Πss(0) are profits at x = 0 given steady state real marginal costs and consumption.
A second order expansion of the flow cost function around x = 0, yields the following

quadratic approximation

F (x) ≈ η(η − 1)

2
x2,

where the profits are expressed as a fraction of the maximized profits Πss(0). Thus, profit
maximization can be approximated by the minimization of the quadratic return function
η(η−1)

2
x2.

The profit function Π(x) also reveals that the aggregate consumption level C only has
a second order effect on the firm’s choice of the optimal price gap, since the cross partial
derivative of ∂2Π

∂x∂C
is zero when evaluated around the optimal value x = 0. This fact, which

is due to the constant elasticity assumption, implies that the steady state decision rules of
the firm are not altered, up to a first order, by a small perturbation of the aggregate variable
C. We note that the absence of strategic complementarities makes the analysis with steady
state rule Λ very close to the one of a general equilibrium model with feedback to aggregates
(see Appendix D).

The firm’s price-setting problem. The firm’s sequential problem consists in minimizing
the flow costs from forgone profits and effort costs by choosing hazard rates `(t) and the
optimal reset point x∗ according to

υ (x) = min
`(t),x∗

E
{∫ ∞

0

e−ρt [F (x (t)) + (κ ` (t))γ] dt
∣∣∣x (0) = x

}
s.t. x(t) = x(0)− µt+ σz(t) +

∑
τi<t

∆x(τi)

where τi denotes the stopping times when a resetting opportunity arrives, ∆x(τi) = x∗−x(τi)
is the price change, and (κ`)γ is the effort cost of choosing hazard rate ` with κ > 0 and
γ > 1. This sequential formulation implies the HJB equation in equation (6).

B Proof of Proposition 1

Proof. Note that upon a stopping time τ (when adjustment occurs) we have x(τ) = x∗ +
σz(τ) where z(t) is a standard Brownian motion since µ = 0. By Ito’s lemma the stochastic
process u(t) ≡ (x(t)− x∗)2 follows the diffusion

du = σ2dt+ 2σ
√
u dz
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Notice that u(t)− σ2t = 2σ
√
u z(t) is a martingale. Letting τ be a stopping time, we have

E
(
u(τ)− σ2τ

)
= 0 so that E (u(τ))− σ2E (τ) = 0

Note that E(∆x) = E(x∗−x(τ)) = −σEz(τ) = 0, so that E (u(τ)) ≡ V ar(∆x) is the variance
of the size of price changes. Then, using that the mean duration of price changes satisfies
E (τ) = 1/N , we have

N · Var(∆x) = σ2.

From the equation above and the stated relation between variance and frequency among the
two economies, we immediately obtain σ̃2 = s σ2. Next we prove the scaling properties stated
in the proposition. The steps are: we guess and verify a solution for the value function ṽ
using the HJB, then we obtain the hazard function Λ̃ and we guess and verify a solution to
m̃ using the hazard and the KFE. The HJB equation for the tilde economy satisfies

ρ̃ ṽ(x) = B̃x2 +
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2
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a
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s
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1
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v
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)
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s
β and substitute in the equation above to obtain (after some algebra)
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This verifies our guess for ṽ since the HJB for v holds. Note that given the value function
and parameters we have
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1
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) 1
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a
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Now guess a density function m̃(x) = m
(

x√
a

)
1√
a
. Note that the density m solves∫∞

−∞m(x)dx = 1 hence it follows that
∫∞
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)
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fies the integration to one condition. Consider the Kolmogorov forward equation for the tilde
economy
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2
m̃′′(x), x 6= 0

and rewrite it using the guessed density, σ̃2 = sσ2, and equation (27). We obtain
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which verifies our guess for m̃ since the KFE for m holds. Our final result follows from

q̃(x) =
Λ̃(x)m̃(x)

Ñ
=

Λ
(

x√
a

)
m
(

x√
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)
N

1√
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(
x√
a

)
1√
a
.

C Detailed Data Description

In this Appendix we describe the data-cleaning process and provide information on the data
coverage. We use granular price data collected from the websites of large multi-channel re-
tailers that sell products both online and in brick-and-mortar stores. The data were collected
on a daily basis by PriceStats, a private firm related to the Billion Prices Project at Harvard
and MIT. Previous research has shown that price indices constructed with this data can
closely track official CPI statistics in many countries (Cavallo and Rigobon (2016)).20 We
focus on the “Food and Beverages” sector and use data for all products sold by some of the
largest food retailers in six European countries (France, Germany, Italy, Netherlands, Spain,
and the United Kingdom) and the United States. The sample goes from January 1st, 2019,
until July 22nd, 2023, and contains daily information on price spell duration and the size of
price changes.

Data-cleaning process. To minimize the impact of scraping errors and compositional
changes, we keep only the products that remain in the sample for at least 365 days. For
each product, we fill all the missing prices with the last available price from the previous
spell. We also drop all price changes larger than 1.5 log points and equal to 1 cent in local
currency. We filter temporary price discounts (sales) by using a V-shaped algorithm that
detects a price drop followed by an equal price increase, back to the original price, within
90 days. When we identify a sale, we replace the discounted price with the last observed
pre-sale price to obtain a regular price spell for that product.

Data coverage. The final dataset contains information on 583,788 products from 58
retailers the “Food and Beverages” sector. For each country, we have products from eleven
3-digit COICOP sectors within the 1-digit “Food and Beverages” sector. As Table 2 shows,
each product remains over 1000 days in the sample with an average of 8 distinct prices.

D General equilibrium

Equilibrium. The equilibrium is characterized by {v̂, m̂, C} a value function for the firms’
price-setting problem, a distribution of price gaps, and a path of aggregate consumption such
that for each t

20Also see Cavallo, A. (2013). Online and official price indexes: Measuring Argentina’s inflation. Journal
of Monetary Economics 60 (2), 152-165
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Table 2: Data Coverage

Average Prices Average
Retailers Unique Products per Product Product Life

France 12 147,115 9.41 998
Germany 7 65,670 7.26 963
Italy 5 36,490 7.04 988
Netherlands 8 80,614 9.98 1,001
Spain 9 91,184 8.65 1,051
United Kingdom 10 86,295 4.98 1,096
United States 7 76,420 9.05 1,034
All 58 583,788 8.05 1,019

ρv̂(x, t)− v̂t(x, t) =F (x, t;C(t))− µ v̂x(x, t) +
σ2

2
v̂xx(x, t) + min

`,x∗
{` (v̂(x∗, t)− v̂(x, t)) + (κ `)γ},

(28)

m̂t(x, t) = − λ̂(x, t)m̂(x, t) + µ m̂x(x, t) +
σ2

2
m̂xx(x, t), x 6= x̂∗(t), (29)

C(t) =

(
K

(
E(t)

W (t)

)ζ
α

)− 1
ε (∫

R
e(1−η)xm̂(x, t)dx

)− 1
ε(1−η)

, (30)

where F emphasizes how the firm problem depends on aggregate consumption C(t). Equa-
tion (28) takes a path of aggregate demand C and solves for v̂ given terminal condition
limt→∞ v̂(x, t) = v(x), the steady-state value function. Policies λ̂, x̂∗ are obtained from equa-
tion (28) using the optimal return condition v̂x(x̂

∗(t), t) = 0 and the optimal hazard condi-
tion in equation (7). Equation (29) takes policies and solves for m̂ given initial condition
m̂(x, 0) = m(x+ δ), the displaced steady-state distribution.

Equilibrium is a fixed point problem. Policies λ̂, x̂∗ depend on the path C and the
distribution depends on a path of policies. Equation (30) is the equilibrium condition coupling
the HJB and KFE, requiring that the path C is consistent with both. This is the structure
of a mean-field game where optimal decisions and aggregation are coupled only through a
finite set of distributional moments, see Alvarez, Lippi, and Souganidis (2023). In this case,
only through the aggregate consumption path.

Fixed point problem. Following Golosov and Lucas (2007), we construct an operator
Γ over paths C such that a fixed point solves the coupled system of equations described by
equations (28)-(30). Consider a path C, then the correspondence Γ maps C into a path ΓC
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implied by the HJB and KFE. Specifically, for each t, (ΓC) (t) is defined as

(ΓC) (t) =

(
K

(
E(t)

W (t)

)ζ
α

)− 1
ε (∫

R
e(1−η)xm̂(x, t;C)dx

)− 1
ε(1−η)

.

where m̂ emphasizes the dependence on the input path C. Aggregate consumption path
C = ΓC and associated v̂, m̂ solve equations (28) to (30).

Computation. To compute the equilibrium we use standard finite difference methods
(Achdou et al., 2021). Iteration on the operator Γ converges in few steps. We set the two
additional parameters of labor disutility and relative risk aversion to standard parameters
α = 6 and ε = 2, following Golosov and Lucas (2007).

A shock to energy prices increases marginal cost by δ = 20%. We assume that energy
prices and money grow at rate µ. Together these imply that (i) the shock to nominal marginal
cost is permanent, drifting at rate µ for t > 0 and (ii) the relative price of energy to wages
E(t)/W (t) increases permanently.

Results. Panel (a) and (b) of Figure 5 indicate that the general equilibrium response of
frequency is very close to one using steady-state policy rules. Panel (a) depicts the hazards,
as a monthly probability, at several points in time, in yearly units, and shows that they are
close to the stationary hazard (dashed). Panel (b) shows that the response of frequency is
slightly dampened due to a lower hazard at impact but reaches a comparable peak response
of 5 price changes per year.

Panel (c) shows the response of output. At impact, the increase in relative costs E(t)/W (t)
exactly offsets the increase in demand due to low price gaps. Afterwards, elevated relative
costs and rising prices P (t) generate a permanent decrease in output. This is a canonical
permanent supply shock.

The slightly dampened response of frequency is explained by the general equilibrium ef-
fects on the flow cost function (i.e. on the profit function). Equation (26) indicates that flow
costs increase with output (are more negative) and decrease with real marginal costs, with
an elasticity of 1 and η− 1 = 5, respectively. Real marginal costs (in equation (25)) increase
by δ at impact and gradually revert to steady state, whereas output (in equation (24)) is
unresponsive at impact and gradually declines by δ/ε relative to the pre-shock level. Quan-
titatively, the real marginal cost drives the dynamics of the flow cost, reducing the marginal
value of repricing efforts, and thus the hazard (see panel (a)). This in turn, marginally
dampens the response of frequency.
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Figure 5: Propagation of a Large Shock in General Equilibrium

(a) Time dependent hazard (b) Frequency of price changes: N(t)
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E More evidence on increased frequency of price changes

Figure 6: Increase in Frequency: Aggregate data

(a) Spain CPI data (b) Italy CPI data
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Sources: Left panel, Instituto Nacional de Estadistica and Bank of Spain staff calculations. Right panel,
Istat and Bank of Italy staff calculations.
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