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A Data

A.1 Paper Search and Inclusion

We searched for relevant papers on the scientific citation indexing database Web of Science.
We used, after several trial-and-error to fine-tune, the following combination of query terms.

©«
(loss AND avers*)

OR "loss aversion coefficient"
OR "loss aversion index"
OR ("loss avers*" AND ("willingness to pay" OR "willingness to accept"))

ª®®®¬
AND(

estimat* OR measur* OR experiment* OR survey
)

Figure A.1: Keywords used in the search.

The initial search, made in the Summer of 2017, returned total hits of 1,547 papers. As
a first step of paper identification, we went through titles and abstracts and threw out 833
papers that were irrelevant to our study. We then read the remaining papers, applied our
inclusion criteria based on the content, and coded information. Finally, we posted a message
on the email list of the Economic Science Association to ask for relevant papers (in February
2018).

1st round: Web of Science

Articles searched on the basis of abstract Excluded papers that do not collect empirical data
nor estimate loss aversion coefficient

Read through of article and application of
inclusion criteria

Excluded papers that do not collect empirical data
nor estimate loss aversion coefficient

2nd round: The ESA mailing listFinal set of papers (𝑛 = 150)

𝑛 = 1, 547

𝑛 = 714

Figure A.2: Paper search and data construction.
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A.2 Coded Variables

Table A.1: List of coded variables.

Variable Description
Atricle meta data

main_title Title of the paper
main_lastnames Last names of the authors
main_firstnames First names of the authors
main_published = 1 if published
main_yearpub Year of publication
main_journal Journal
main_affliations Affiliations of the authors

Estimates
la Reported loss aversion coefficient _
la_type Type of reported _
la_aggmean = 1 if reported _ is aggregate-level
la_indmean = 1 if reported _ is individual-level mean
la_indmedian = 1 if reported _ is individual-level median
both_stats = 1 if individual-level mean and median are reported
se SE of _ (reported or calculated)
se_imp SE of _ (reported, calculated, or imputed)
se_type Type of SE (reported, calculated, or imputed)
se_calc = 1 if SE is calculated from other information
se_calc_method What information is used for SE calculation

Type of data
type_lab_exp = 1 if laboratory experiment
type_field_exp = 1 if field experiment
type_class_exp = 1 if classroom experiment
type_online_exp = 1 if online experiment
type_gameshow = 1 if TV game show
type_field_other = 1 if other field data

Type of the experiment/survey
loc_lab = 1 if laboratory study
loc_field = 1 if field study
loc_online = 1 if online study
loc_class = 1 if classroom study

Location of the experiment/survey
loc_country Country
loc_state State
loc_city City
loc_<CONTINENT> Continent dummy
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Variable Description
Subject pool

subject_children = 1 if subjects are children
subject_uni = 1 if subjects are university students/staffs
subject_elderly = 1 if elderly population
subject_gen = 1 if general population
subject_farmer = 1 if subjects are farmers
subject_mixed = 1 if mixed subject population
subject_unknown = 1 if unknown population
subject_monkey = 1 if subjects are Capuchin monkeys

Reward
reward_real = 1 if real reward
reward_money = 1 if monetary reward
reward_food = 1 if food reward
reward_cons_good = 1 if consumption goods
reward_env_good = 1 if environmental goods
reward_health = 1 if health
reward_mixed = 1 if mixed type
reward_other = 1 if other type of reward

Method
method_question = 1 if questionnaire
method_seqbin = 1 if sequential binary choice
method_mpl = 1 if multiple price list
method_bdm = 1 if BDM
method_matching = 1 if matching
method_gp = 1 if Gneezy-Potters
method_other = 1 if other method
method_other_type Description of the method (if method_other = 1)
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Variable Description
Utility specifications

spec_u_est = 1 if utility function is parametrically estimated
spec_u_crra = 1 if CRRA is assumed
spec_u_crra_eq = 1 if CRRA with common curvature is assumed
spec_u_crra_noneq = 1 if CRRA with different curvatures is assumed
spec_u_cara = 1 if CARA is assumed
spec_u_linear = 1 if linear utility is assumed
spec_u_other = 1 if other parametric form is assumed
spec_nonparametric = 1 if𝑈 is nonparametrically recovered

Reference-point specifications
spec_rp_zero = 1 if reference point is 0
spec_rp_statusquo = 1 if reference point is status quo
spec_rp_expectation = 1 if reference point is expectation
spec_rp_other = 1 if other type of reference point is assumed

Loss aversion
loss_tversky_kahneman = 1 if _ is defined as in Tversky and Kahneman
loss_koebberling_wakker = 1 if _ is defined as in Köbberling and Wakker
loss_neilson = 1 if _ is defined as in Neilson
loss_wakker_tversky = 1 if _ is defined as in Wakker and Tversky
loss_bowman = 1 if _ is defined as in Bowman, Minehart and Rabin
loss_koszegi_rabin = 1 if _ is defined as in Kőszegi and Rabin
loss_other = 1 if another definition of _ is used

Notes: See Online Appendix B for the definitions of loss aversion.
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Variable Description
Publication status

pub_regular = 1 if published in a peer-reviewed journal
pub_econtopfive = 1 if published in a “Top 5” journal in economics
pub_unpub = 1 if not published in a peer-reviewed journal
journal_if Journal impact factor (in 2018)
journal_if_std Standardized journal impact factor (in 2018)

Journal topic/discipline
journal_category Journal topic/discipline
cat_econ = 1 if economics
cat_psych = 1 if psychology
cat_neuro = 1 if neuroscience
cat_agri = 1 if agricultural sciences
cat_medical = 1 if medical sciences
cat_mgt = 1 if management
cat_transport = 1 if transportation research
cat_multi = 1 if multi-disciplinary

Notes: Journal categories are based on the classification provided by The Master Journal List (https://mjl.
clarivate.com/home). Journal impact factors are downloaded from The Journal Citation Reports (https:
//clarivate.com/webofsciencegroup/solutions/journal-citation-reports/).
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A.3 Approximation and Imputation of Missing Standard Errors

The dataset includes 192 estimates (out of 607) of loss aversion coefficient without corre-
sponding standard errors (SEs). In order to keep these observations in our meta-analysis, we
approximated and imputed missing SEs using other available information.

First, we calculated SEs of four observations from 𝑝-values of the two-sided test for the
null hypothesis 𝐻0 : _ = 1, from

se =
|_ − 1|

Φ−1(1 − 𝑝) ,

where Φ−1 is the quantile function of the standard normal distribution.
Second, we approximated 64 SEs from the inter-quartile range (IQR) and sample size, using

se ≈ 1.35 × IQR
√
𝑛

.

Note that the use of this approximation formula is legitimate if the parameters are normally
distributed in the population, which is a strong assumption in our dataset. Nevertheless,
obtaining even an “approximated” SE seemed preferable to dropping the observation entirely,
or to making other, even stronger, assumptions allowing us to keep the observation.

Finally, we imputed the remaining 124 missing SEs. The basic idea is to estimate the
parameters characterizing their distribution in the data, log(se𝑜) ∼ N (`se, 𝜎2

se). Using these
distributional parameters, we can then estimate the missing values in SE by letting log(se𝑚) ∼
N (̂̀se, 𝜎2

se), where the subscripts 𝑜 and 𝑚 stand for observed and missing, respectively, and
(̂̀se, 𝜎se) are estimated quantities.

Implementing this estimation, we will thus obtain values for the missing observations in
SE that have the same mean and variance. We can, however, do much better than that if we
can find other variables in our dataset that are significantly associated with SEs (McElreath,
2016). As it turns out, the single best predictor of the SE is the loss aversion estimate itself.
Once it is controlled for, no other predictor—including the measurement type and the square
root of the number of observations—is significant. The loss aversion coefficient explains 51%
of the variance in SEs. By letting `se = 𝛼se + 𝛽se_, we can thus get much better imputation
results than by only using the distributional characteristics.

Figure A.4 shows the imputed standard errors juxtaposed with the observed standard er-
rors, and plotted against the loss aversion coefficient. The solid line indicates the regression
line of the SE on loss aversion in the subset of data for which we observe the SE. The estimates
of loss aversion with and without SEs exhibit systematic difference (𝑝 = 0.002, Wilcoxon rank
sum test; Figure A.3 and Figure A.4B) but, as wewould expect, the imputed SEs are no different
than the observed SEs on average (𝑝 = 0.458, Wilcoxon rank sum test; Figure A.4C).
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Figure A.3: Empirical CDF of reported loss aversion coefficient _ by the type of estimates and by the
type of SE.Notes: Solid lines correspond to observations with reported SEs and dashed lines correspond
to observations for which SEs are imputed.
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Figure A.4: Imputation of standard errors. Notes: The solid black line in panel A is the regression line
of the standard errors on loss aversion in the data with observed standard errors. Panels B and C show
Kernel density estimates of the distributions of _ and log(se). The Gaussian kernel with Silverman’s
rule of thumb for the bandwidth selection is applied. The 𝑥-axis in each panel is cut off at 6 for better
visual rendering, but the density estimation keeps all the relevant observations.
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A.4 Journals

Table A.2: List of journals and disciplines.

Journal Category
1 Addiction Substance Abuse
2 Addictive Behaviors Psychology, Applied
3 American Economic Journal: Economic Policy Economics
4 American Economic Journal: Microeconomics Economics
5 American Economic Review Economics
6 American Journal of Agricultural Economics Agriculture/Agronomy
7 Behavioral Neuroscience Neurosciences
8 Brain Neurosciences
9 Cognition & Emotion Psychology
10 Consciousness and Cognition Psychology, Experimental
11 Current Biology Cell Biology
12 Developmental Cognitive Neuroscience Psychology, Development
13 Ecological Economics Ecology
14 Economic Inquiry Economics
15 Economics Letters Economics & Business
16 Ekonomický časopis Economics
17 Emotion Psychology, Experimental
18 Environment and Development Economics Economics
19 European Economic Review Economics
20 European Journal of Operational Research Operations Research & Management Science
21 European Journal of Transport and Infrastructure Research Social Sciences, General
22 European Review of Agricultural Economics Economics & Business
23 Experimental Economics Economics
24 Frontiers in Human Neuroscience Psychology
25 Frontiers in Psychology Psychology, Multidisciplinary
26 Games and Economic Behavior Economics
27 International Economic Review Economics
28 International Journal of Applied Behavioral Economics Economics & Business
29 International Journal of Research in Marketing Economics & Business
30 Journal of African Economies Agricultural Sciences
31 Journal of Banking & Finance Business, Finance
32 Journal of Behavioral and Experimental Economics Economics
33 Journal of Behavioral Decision Making Psychology, Applied
34 Journal of Behavioral Finance Business, Finance
35 Journal of Business & Economic Statistics Business & Economics
36 Journal of Consumer Research Economics
37 Journal of Development Economics Economics
38 Journal of Development Studies Social Sciences, General
39 Journal of Economic Behavior & Organization Economics
40 Journal of Economic Dynamics and Control Economics
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Journal Category
41 Journal of Economic Psychology Economics
42 Journal of Empirical Finance Economics
43 Journal of Experimental Psychology: General Psychology
44 Journal of Gambling Studies Substance Abuse
45 Journal of Health Economics Economics & Business
46 Journal of International Economics Economics
47 Journal of Marketing Research Economics
48 Journal of Mathematical Psychology Psychology, Mathematical
49 Journal of Political Economy Economics
50 Journal of Risk and Uncertainty Business & Economics
51 Judgment and Decision Making Psychiatry/Psychology
52 Management Science Management
53 Marketing Science Economics
54 Nature Multidisciplinary Sciences
55 NeuroImage Neurosciences
56 Neuron Neurosciences
57 Neuropsychiatric Disease and Treatment Psychiatry
58 Organizational Behavior and Human Decision Processes Management
59 PLOS Computational Biology Biochemical Research Methods
60 PLOS ONE Multidisciplinary Sciences
61 PNAS Multidisciplinary Sciences
62 Proceedings of the Royal Society B: Biological Sciences Evolutionary Biology
63 Psicológica Psychology, Experimental
64 Psychiatry Research Psychiatry/Psychology
65 Psychological Science Psychology
66 Psychology and Aging Gerontology
67 Quantitative Finance Economics
68 Quarterly Journal of Economics Economics
69 Rationality and Society Social Sciences, General
70 Review of Economics and Statistics Economics
71 Review of Managerial Science Management
72 Revista Espanola de Financiacion y Contabilidad Business, Finance
73 Science Multidisciplinary Sciences
74 Theory and Decision Economics
75 Tourism Management Hospitality, Leisure, Sport & Tourism
76 Transportation Research Part B: Methodological Transportation Science & Technology
77 Transportation Research Record Transportation Science & Technology
78 World Development Economics

Notes: Journal categories are based on the classification provided by The Master Journal List (https://mjl.
clarivate.com/home).
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Table A.3: Disciplines.

Frequency Share (%)
Economics 62 47.7
Business/Management 21 16.2
Psychology 17 13.1
Multi-disciplinary 10 7.7
Psychiatry/Medicine 6 4.6
Neuroscience 4 3.1
Transportation/Tourism 3 2.3
Agriculture 2 1.5
Other 5 3.8
Total 130 100.0
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B Coefficient of Loss Aversion _

We consider a situation where an agent makes a choice under risk between prospects with
at most two distinct outcomes, as in Section 2. Let (𝑥, 𝑝;𝑦) denote a simple lottery, which
gives outcome 𝑥 with probability 𝑝 and outcome 𝑦 with probability 1 − 𝑝 . For simplicity of
exposition, we assume the reference point to be 0, so that the sign of the outcome indicates
whether it is a gain or a loss. We call a lottery non-mixed if two outcomes have the same sign
(i.e., either 𝑥,𝑦 ≥ 0 or 𝑥,𝑦 ≤ 0) and mixed if one of the outcomes is positive and the other
outcome is negative. Without loss of generality, we assume that 𝑥 > 0 > 𝑦 when we deal with
a mixed lottery. In this setup, PT (Tversky and Kahneman, 1992) postulates that the agent
evaluates non-mixed prospects (𝑥, 𝑝;𝑦) with 𝑥 ≥ 𝑦 ≥ 0 or 𝑥 ≤ 𝑦 ≤ 0 by

𝑤𝑠 (𝑝)𝑈 (𝑥) + (1 −𝑤𝑠 (𝑝))𝑈 (𝑦),

and mixed prospects (𝑥, 𝑝;𝑦) with 𝑥 > 0 > 𝑦 by

𝑤+(𝑝)𝑈 (𝑥) +𝑤−(1 − 𝑝)𝑈 (𝑦),

where 𝑤𝑠 : [0, 1] → [0, 1] is a probability weighting function for gains (𝑠 = +) or for losses
(𝑠 = −), with 𝑤𝑠 (0) = 0 and 𝑤𝑠 (1) = 1, and 𝑈 : R → R is a strictly increasing utility function
satisfying𝑈 (0) = 0.

Several different definitions of loss aversion have been proposed and used in the literature.
Below we summarize six definitions discussed in Abdellaoui, Bleichrodt and Paraschiv (2007).

• Kahneman and Tversky (1979) propose to define loss aversion by −𝑈 (−𝑥) > 𝑈 (𝑥) for
all 𝑥 > 0. One way to define a coefficient of loss aversion is to take the mean (or median)
of

−𝑈 (−𝑥)
𝑈 (𝑥)

over the relevant values of 𝑥 , such as the outcomes used in the experiment.

• Tversky and Kahneman (1992) implicitly use the ratio of the utility of a loss of one
monetary unit and a gain of one monetary unit,

−𝑈 (−1)
𝑈 (1) ,

as a coefficient of loss aversion. This definition follows from a power utility specification
(see equation (3) in Section 2).

• Wakker and Tversky (1993) propose to define loss aversion by 𝑈 ′(−𝑥) ≥ 𝑈 ′(𝑥) for all
𝑥 > 0. One way to define a coefficient of loss aversion is to take the mean (or median)
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of
𝑈 ′(−𝑥)
𝑈 ′(𝑥)

over the relevant values of 𝑥 , such as the outcomes used in the experiment.

• Bowman, Minehart and Rabin (1999) propose to define loss aversion by𝑈 ′(−𝑥) ≥ 𝑈 ′(𝑦)
for all 𝑥,𝑦 > 0. A candidate for a coefficient of loss aversion is the ratio

inf𝑥>0𝑈 ′(−𝑥)
sup𝑦>0𝑈 ′(𝑦) .

• Neilson (2002) propose to define loss aversion by𝑈 (−𝑥)/(−𝑥) ≥ 𝑈 (𝑦)/𝑦 for all 𝑥,𝑦 > 0.
A candidate for a coefficient of loss aversion is the ratio

inf𝑥>0𝑈 (−𝑥)/(−𝑥)
sup𝑦>0𝑈 (𝑦)/𝑦 .

• Köbberling and Wakker (2005) propose a coefficient of loss aversion

lim𝑥↑0𝑈 (𝑥)
lim𝑥↓0𝑈 (𝑥) .
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C Bayesian Hierarchical Model

C.1 Modeling Framework

The main goal of our meta-analysis is first to obtain the “best available” estimate of the loss
aversion coefficient _ combining the available information in the literature and then to un-
derstand the heterogeneity of reported estimates across studies. To this end, we analyze the
data using a Bayesian hierarchical modeling approach.

Meta-analysis is naturally hierarchical. The effect sizes reported in different studies are
summary measures of individual-level behavior. We summarize these measures by estimat-
ing their mean and variation based on a given model. Additional hierarchical levels can be
introduced, e.g., to deal with statistical dependence in estimates, such as when one and the
same paper or study reports multiple estimates.

Hierarchical models, in turn, are naturally Bayesian (Gelman and Hill, 2006; McElreath,
2016). To see this, one can picture the estimated aggregate mean as an endogenous prior, that
will then influence the estimates of the “true” study-level effect, depending on the uncertainty
surrounding the estimate itself—a statistical procedure known as “shrinkage” or “pooling”.
One of the great advantages of the Bayesian approach is further that the estimate emerging
from the meta-analysis—the posterior mean of our analysis—can serve as a prior for future
empirical studies, and is easy to update with additional evidence. This is conducive to the
systematic quantitative accumulation of knowledge—the prime objective of meta-analysis.

Consider the dataset (_𝑖, se2𝑖 )𝑚𝑖=1, where _𝑖 is the 𝑖th measurement (or observation) of the
loss aversion coefficient in the dataset and se𝑖 is the associated standard error that captures
the uncertainty surrounding the estimate. We assume that the 𝑖th reported estimate _𝑖 is
normally distributed around the parameter _𝑖 :

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ), (C.1)

where the variability is due to the sampling variation captured by the known standard error
se𝑖 .1

Sampling variation is part of the observed variation in the reported estimates (_𝑖)𝑚𝑖=1, but
it may not be all, since there is a possibility of “genuine” heterogeneity across measurements
(due to different settings, for example). We model this by assuming that each _𝑖 is normally
distributed, adding another level to the hierarchy:

_𝑖 | _0, 𝜏 ∼ N(_0, 𝜏2), (C.2)

where _0 is the overall mean of the estimated loss aversion parameters _𝑖 , and 𝜏 is its standard

1The parameter _𝑖 is often referred to as the “true effect size” in the random-effects meta-analysis.
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deviation, capturing the variation between observations in the data. The overall variance
in the data, therefore, consists of two parts, the between-observation variance, 𝜏2, and the
individual sampling variation coming from measurement uncertainty, se2. This can be clearly
seen by combining expressions (C.1) and (C.2) into one:

_𝑖 | _0, 𝜏, se𝑖 ∼ N(_0, 𝜏2 + se2𝑖 ).

Note that this formulation is mathematically equivalent to the classical formulation of
random-effects meta-analysis (DerSimonian and Laird, 1986), which is typically expressed as

_𝑖 = _𝑖 + b𝑖 = _0 + Y𝑖 + b𝑖,

where b𝑖 ∼ N(0, se2𝑖 ) is a sampling error of _𝑖 as an estimate of _𝑖 , and each observation-
specific “true” effect _𝑖 is decomposed into _0 (the overall mean) and the sampling error b 𝑗 .
It is further assumed that Y𝑖 ∼ N(0, 𝜏2), where 𝜏2 is the between-observation heterogeneity,
beyond the mere sampling variance. When 𝜏 = 0, this model reduces to a fixed-effect meta-
analysis. This highlights the central assumption underlying fixed-effect meta-analysis—that
different estimates differ only based on random sampling variation—which clearly does not
seem adequate for the diverse set of estimates included in our meta-analysis. We thus con-
duct a random-effects analysis, allowing for both random sampling variation and systematic
differences between studies and estimates.

In this model, each observation _𝑖 in the data will be “pooled” towards the overall mean
_0, with the extent of the pooling depending on two factors: (i) the standard error associated
with the estimate; and (ii) how far the estimate lies from the estimated mean, _0. As we see
above, the variance across observations is decomposed into two parts—variance due to error
in estimation, and the genuine between-observation heterogeneity. The pooling equation for
a specific observation 𝑖 takes the following form

_𝑖 = (1 − 𝜔𝑖)_𝑖 + 𝜔𝑖_0, (C.3)

where 𝜔𝑖 is the “pooling factor” (Gelman and Pardoe, 2006), defined as

𝜔𝑖 =
se2𝑖

𝜏2 + se2
𝑖

. (C.4)

The equation makes it clear that the larger the SE ceteris paribus, the larger the pooling factor,
and thus the closer the estimate will be drawn to the overall mean estimate of the population,
indicated by _0. At the same time, the smaller the between-study variation captured by 𝜏2, the
more pooling towards the population mean. This makes intuitive sense—estimates are pooled
more to the extent that all estimates in the population are similar to each other, and to the
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extent that they are characterized by a low degree of precision.
It is now straightforward to account for variation across estimates driven by observable

characteristics—commonly referred to as meta-regression—by letting

_𝑖 = ^𝑖 + 𝑋𝑖𝛽 + Y𝑖, (C.5)

where ^𝑖 is the intercept of the regression, 𝑋𝑖 a matrix of observable study characteristics for
observation 𝑖 , and 𝛽 is a vector of regression coefficients. Notice that the residual is distributed
as Y𝑖 ∼ N(0, 𝜏2). By comparing the variance in this model to the variance estimated in a model
empty of covariates, i.e., where 𝑋𝑖 contains no entries, we will be able to assess what extent
of the overall variance between observations is explained by the observation-level character-
istics encoded in 𝑋𝑖 . In particular, the variance explained is given by 1 − (𝜏21/𝜏20 ), where 𝜏20
is the estimated variance between observation in a model empty of covariates, and 𝜏21 is the
equivalent variance term estimated in the meta-regression model.

While this normal-normal structure expressed in equations (C.1, C.2) is the benchmark
setup we use, it will quickly become interesting to relax the modeling assumptions described
here, e.g., by replacing the normal distributionwith a robust student-𝑡 distribution or an asym-
metric log-normal distribution, and by allowing for additional hierarchical levels to account
for the lack of independence in the observations in our data.

We estimate the model in Stan (Carpenter et al., 2017) using the Hamiltonian Monte Carlo
simulations, an algorithm for Markov Chain Monte Carlo, and launch it from R (https://
www.r-project.org/) using RStan (StanDevelopment Team, 2020). Priors for the population-
level parameters are chosen in such a way as to be mildly regularizing, i.e., they are informa-
tive but typically encompass ranges that are one order of magnitude larger than the estimated
values we expect based on the range of the data (McElreath, 2016). Priors for lower-level pa-
rameters are then constituted by the endogenously estimated population-level parameters.
The estimates we report are not sensitive to the choice of the particular priors we use (Sec-
tion C.3.3 below).
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C.2 Estimation

In Section 4.3, we started from fitting the benchmark model expressed as equations (C.1)
and (C.2):

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ),
_𝑖 | _0, 𝜏 ∼ N(_0, 𝜏2),

_0 ∼ half N(1, 5),
𝜏 ∼ half N(0, 5).

(M1a)

(This model was called M1 in Section 4.3.) The estimated overall mean _0 is 1.809 with a 95%
credible interval (CrI) of [1.739, 1.878].

Pooling. Equations (C.3) and (C.4) describe the mechanism underlying the pooling. The
amount of pooling applied to an observation—i.e., the extent to which an estimated param-
eter _𝑖 is drawn towards the overall mean _0 from its observed value _𝑖—will depend on the
SE associated with the observation, and its distance from the mean. This is illustrated in Fig-
ure C.1, which shows a scatter plot of the estimated loss aversion parameter, _𝑖 , against the
observed parameter, _𝑖 . For standard errors up to 0.4, almost no pooling is observed, even
for values that fall relatively far from the mean. Pooling increases for larger SEs between 0.4
and 1, and becomes very strong for even larger SEs. The farther an observation falls from the
mean, the more it is pooled, ceteris paribus. We further observe very strong pooling for large
observations because the standard errors themselves tend to increase with loss aversion, as
detailed above.

0

1

2

3

4

5

6

0 1 2 3 4 5 6
Reported λi

E
st

im
at

ed
 λ

i

se < 0.15

0.15 < se < 0.4

0.4 < se < 1

1 < se

Figure C.1: Pooling of estimates by SE. Notes: The horizontal dashed line corresponds to the estimated
overall mean _0 = 1.809. The axes are cut off at six for better visualization.
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Additional models. In addition to models M1a and M2 discussed in Section 4.3, we esti-
mated two additional “intermediate” models. The first alternative model is a straightforward
extension of model M1a, replacing the normal distribution with a log-normal distribution:

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ),
_𝑖 | _ℓ0, 𝜏ℓ ∼ logN(_ℓ0, 𝜏2ℓ ),

_ℓ0 ∼ N(1, 5),
𝜏ℓ ∼ half N(0, 5).

(M1b)

Note the super-/sub-scripts ℓ in the location and scale parameters (_ℓ0, 𝜏2ℓ ) of the log-normal
distribution. We can calculate the mean and the median of the distribution by exp(_ℓ0 + 𝜏2ℓ /2)
and exp(_ℓ0), respectively, exploiting the properties of the log-normal distribution.

This leaves the assumption of independence in the observations to be addressed. Insofar
as different research groups tend to use different theoretical approaches and measurement
methodologies, such an independence assumption seems difficult to defend. This holds even
more for multiple estimates contained in one and the same paper, some of which use the same
data and use different estimation procedures or functional forms. Even if the data are different,
the measurement setup and the methodology used for estimation are generally the same.
This means that one paper containing a lot of estimates could potentially affect our global
estimates, especially if, for whatever reason, some papers report a large number of particularly
small or large estimates. Our 607 observations have been obtained from 150 distinct papers,
the largest number of observations in a single paper being 53 (Rieger, Wang and Hens, 2017;
Wang, Rieger and Hens, 2017), so the independence assumption seems rather heroic.

The second alternative model tries to address the non-independence of reported estimates
by explicitly modeling the nesting of observations in papers. To do this, we introduce paper-
level estimates as an additional hierarchical level. Let _𝑝𝑖 be the 𝑖th estimate reported in
paper 𝑝 . We formulate a model as follows:

_𝑝𝑖 | _𝑝𝑖, se𝑝𝑖 ∼ N(_𝑝𝑖, se2𝑝𝑖),
_𝑝𝑖 | _𝑝, 𝜎𝑝 ∼ N(_𝑝, 𝜎2

𝑝),
_𝑝 | _ℓ0, 𝜏ℓ ∼ logN(_ℓ0, 𝜏2ℓ ),

_ℓ0 ∼ N(1, 5),
𝜏ℓ ∼ half N(0, 5),
𝜎𝑝 ∼ half N(0, 5).

(M1c)

The system now explicitly models the nesting of the estimated observation-level param-
eters, _𝑝𝑖 , in paper-level estimates, _𝑝 . The latter are then modeled as following a log-normal
distribution, just as previously. Figure C.2 illustrates the idea behind this formulation. Fig-
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_𝑝𝑖 | _𝑝𝑖, se𝑝𝑖 ∼ N(_𝑝𝑖, se2𝑝𝑖)
_𝑝𝑖 | _𝑝, 𝜎𝑝 ∼ 𝐹 (_𝑝, 𝜎2

𝑝)
_𝑝 | _ℓ0, 𝜏ℓ ∼ logN(_ℓ0, 𝜏2ℓ )

_𝑝1,1

_𝑝1,2

_𝑝1,1

_𝑝1,2

_𝑝2,1

_𝑝2,2

_𝑝2,1

_𝑝2,2

_ℓ0

_𝑝1

_𝑝2

Figure C.2: Illustration of the nesting structure in models M1c and M2. For the paper-level distribu-
tion 𝐹 in the middle layer, model M1c assumes a normal distribution andmodel M2 assumes a student-𝑡
distribution with additional parameter df (degrees of freedom).

ure C.3 below summarizes all four models we estimated.
Estimating model M1b, we obtain a mean _0 of 1.826, with a 95% CrI of [1.750, 1.910].

Figure C.4 (top right panel) shows the posterior predictive distribution from the estimation
of this model. The fit can be seen to be much better than that of the baseline normal-normal
model shown above and to fit the actual observations closely. We thus conclude that a log-
normal distribution provides a good fit for the data. The mean loss aversion _0 is 2.052 (95%
CrI [1.909, 2.208]), under model M1c. The fit to the data, however, appears to be a little off,
allowing room for improvement (Figure C.4, bottom left panel). The posterior predictive dis-
tribution puts a much larger likelihood on values between 1.8 and 3 while it puts a smaller
likelihood on values below 1.5.

Table C.1: Summary of estimation results.

Distributional assumption Posterior of _0 Posterior of 𝜏
Model Obs. level Paper level Pop. level Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
M1a Normal Normal 1.809 0.036 1.739 1.878 0.746 0.028 0.695 0.803
M1b Normal Log-normal 1.826 0.039 1.750 1.910 0.816 0.256 0.742 0.898
M1c Normal Normal Log-normal 2.052 0.076 1.909 2.208 0.752 0.356 0.603 0.926
M2 Normal Student-𝑡 Log-normal 1.955 0.072 1.820 2.102 0.743 0.342 0.604 0.904

Notes: In Models M1c and M2, (_0, 𝜏) are calculated from the log-normal parameters (_ℓ0, 𝜏ℓ ) by _0 =

exp(_ℓ0 + 𝜏2ℓ /2) and 𝜏2 = [exp(𝜏2ℓ ) − 1] exp(2_ℓ0 + 𝜏2ℓ ).
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Model M1a

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ),
_𝑖 | _0, 𝜏 ∼ N(_0, 𝜏2),

_0 ∼ half N(1, a),
𝜏 ∼ half N(0, a).

Model M1b

_𝑖 | _𝑖, se𝑖 ∼ N(_𝑖, se2𝑖 ),
_𝑖 | _ℓ0, 𝜏ℓ ∼ logN(_ℓ0, 𝜏2ℓ ),

_ℓ0 ∼ N(1, a),
𝜏ℓ ∼ half N(0, a).

Model M1c

_𝑝𝑖 | _𝑝𝑖, se𝑝𝑖 ∼ N(_𝑝𝑖, se2𝑝𝑖),
_𝑝𝑖 | _𝑝, 𝜎𝑝 ∼ N(_𝑝, 𝜎2

𝑝),
_𝑝 | _ℓ0, 𝜏ℓ ∼ logN(_ℓ0, 𝜏2ℓ ),

_ℓ0 ∼ N(1, a),
𝜏ℓ ∼ half N(0, a),
𝜎𝑝 ∼ half N(0, a).

Model M2

_𝑝𝑖 | _𝑝𝑖, se𝑝𝑖 ∼ N(_𝑝𝑖, se2𝑝𝑖),
_𝑝𝑖 | df , _𝑝, 𝜎𝑝 ∼ 𝑡 (df , _𝑝, 𝜎2

𝑝),
_𝑝 | _ℓ0, 𝜏ℓ ∼ logN(_ℓ0, 𝜏2ℓ ),

_ℓ0 ∼ N(1, a),
𝜏ℓ ∼ half N(0, a),
df ∼ half N(0, a),
𝜎𝑝 ∼ half N(0, a).

Figure C.3: Summary of models.
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C.3 Robustness Checks

C.3.1 Estimation Using Subsets of the Dataset

Table C.2: Estimation result for each type of reported _.

Distributional assumption Posterior of _0
Model Type Obs. level Paper level Pop. level Mean SD 2.5% 97.5%
M1a Aggregate Normal Normal 1.700 0.046 1.613 1.789

Individual mean Normal Normal 2.432 0.103 2.233 2.635
Individual median Normal Normal 1.712 0.046 1.622 1.803

M2 Aggregate Normal Student-𝑡 Log-normal 1.843 0.111 1.645 2.080
Individual mean Normal Student-𝑡 Log-normal 2.395 0.148 2.130 2.708
Individual median Normal Student-𝑡 Log-normal 1.728 0.085 1.574 1.903

Notes: In Model M2, _0 is calculated from the log-normal location parameter _ℓ0 by _0 = exp(_ℓ0 +𝜏2ℓ /2).
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Figure C.5: Estimation of model M2 for each type of reported loss aversion coefficient separately. (A
Distributions of reported _𝑝𝑖 (dashed lines) and posterior predictive distributions (solid lines). (BC)
Posterior distributions of _0 and 𝜏 . Notes: (_0, 𝜏) are calculated from the log-normal parameters (_ℓ0, 𝜏ℓ )
are calculated by _0 = exp(_ℓ0 + 𝜏2ℓ /2) and 𝜏2 = [exp(𝜏2ℓ ) − 1] exp(2_ℓ0 + 𝜏2ℓ ).
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C.3.2 Estimation Using the “Complete” Dataset

Table C.3: Sensitivity to SE imputation. (A) All data, including observations with imputed SEs (iden-
tical to Table 5). (C) Complete data, including only observations where associated SEs are available.

Distributional assumption Posterior of _0 Posterior of 𝜏
Model Obs. level Paper level Pop. level Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
M1a A Normal Normal 1.809 0.036 1.739 1.878 0.746 0.028 0.695 0.803

C Normal Normal 1.713 0.041 1.634 1.795 0.713 0.032 0.654 0.781
M1b A Normal Log-normal 1.826 0.039 1.750 1.910 0.816 0.256 0.742 0.898

C Normal Log-normal 1.710 0.040 1.634 1.794 0.672 0.229 0.600 0.751
M1c A Normal Normal Log-normal 2.052 0.076 1.909 2.208 0.752 0.356 0.603 0.926

C Normal Normal Log-normal 2.041 0.097 1.865 2.243 0.877 0.449 0.684 1.119
M2 A Normal Student-𝑡 Log-normal 1.955 0.072 1.820 2.102 0.743 0.342 0.604 0.904

C Normal Student-𝑡 Log-normal 1.962 0.091 1.794 2.155 0.824 0.422 0.644 1.048
Notes: In Models M1c and M2, (_0, 𝜏) are calculated from log-normal parameters (_ℓ0, 𝜏ℓ ) by _0 =

exp(_ℓ0 + 𝜏2ℓ /2) and 𝜏2 = [exp(𝜏2ℓ ) − 1] exp(2_ℓ0 + 𝜏2ℓ ).

C.3.3 Sensitivity to the Choice of Priors

Table C.4: Sensitivity to prior specifications. The standard deviation for the half-normal distribution
half N(0, a) is set at a ∈ {5, 10}.

Distributional assumption Posterior of _0 Posterior of 𝜏
Model a Obs. level Paper level Pop. level Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
M1a 5 Normal Normal 1.809 0.036 1.739 1.878 0.746 0.028 0.695 0.803

10 Normal Normal 1.809 0.035 1.740 1.880 0.747 0.027 0.696 0.802
M1b 5 Normal Log-normal 1.826 0.039 1.750 1.910 0.816 0.256 0.742 0.898

10 Normal Log-normal 1.825 0.039 1.753 1.901 0.814 0.257 0.740 0.896
M1c 5 Normal Normal Log-normal 2.052 0.076 1.909 2.208 0.752 0.356 0.603 0.926

10 Normal Normal Log-normal 2.051 0.076 1.909 2.204 0.749 0.357 0.601 0.925
M2 5 Normal Student-𝑡 Log-normal 1.955 0.072 1.820 2.102 0.743 0.342 0.604 0.904

10 Normal Student-𝑡 Log-normal 1.955 0.072 1.819 2.100 0.742 0.340 0.602 0.904
Notes: In Models M1c and M2, (_0, 𝜏) are calculated from log-normal parameters (_ℓ0, 𝜏ℓ ) by _0 =

exp(_ℓ0 + 𝜏2ℓ /2) and 𝜏2 = [exp(𝜏2ℓ ) − 1] exp(2_ℓ0 + 𝜏2ℓ ).
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D Additional Figures and Tables

1
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Figure D.1: Study location. Notes: It is possible that the same dataset was used in two or more papers
(e.g., a cross-country dataset from Rieger, Wang and Hens (2017) and Wang, Rieger and Hens (2017)
in Section 3.3) to estimate model parameters. In such a case, countries are counted multiple times.
This map was created using R (https://www.r-project.org/) on a base world map obtained from
Natural Earth (https://www.naturalearthdata.com/).
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Figure D.2: Reported loss aversion coefficients (_) over time. Notes: The 𝑦-axis is cut off at 7 for better
visualization. The first observation, labeled “TK92”, corresponds to the estimate 2.25 from Tversky and
Kahneman (1992).
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Figure D.3: Distribution of logged loss aversion coefficient log(_). C.f. Figure 3. Notes: There are
85 cases that report both individual-level mean and median. We keep individual-level medians from
these cases in panel A. Bins for the histogram are 0.1 wide. In panel B, the Kernel density estimate
of the distribution log(_) is plotted, using the Gaussian kernel with Silverman’s rule of thumb for the
bandwidth selection. All 607 estimates in the data are included.
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Figure D.4: Histogram of loss aversion coefficient _. (A) All types of estimates combined. (B)
Aggregate-level estimates. (C) Individual-level means. (D) Individual-level medians. Notes: There are
85 cases that report both individual-level mean and median. We keep individual-level medians from
these cases in panel A. Bins for the histogram are 0.1 wide in each panel. The 𝑥-axis is cut off at 6 for
better visual rendering.
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Figure D.5: Empirical CDF of reported loss aversion coefficient _ by the type of estimates. Notes: The
𝑥-axis is cut off at 6 for better visual rendering.
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Figure D.6: Comparing 85 pairs of individual-level means and medians in 34 papers that report both.
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Figure D.7: Estimated _ and precision (1/se). (A) Complete dataset with reported SE. (B) A subset of
the complete dataset (inside the red rectangle in panel A; _ ≤ 4 and 1/se ≤ 80).
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Figure D.8: Scatterplots of the estimated “effect size” against its standard error. (A) The effect size is
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Table D.1: Meta-regression. Posterior distributions of coefficients (c.f. Figure 8).

Category Variable Median 2.5% 16.5% 83.5% 97.5%
Type of estimates Individual-level mean baseline

Individual-level median −0.272 −0.382 −0.325 −0.222 −0.170
Aggregate-level −0.362 −0.602 −0.479 −0.249 −0.125

Type of data Lab experiment baseline
Field experiment 0.548 −0.014 0.284 0.802 1.072
Classroom experiment 0.094 −0.486 −0.179 0.363 0.650
Online experiment −0.091 −0.623 −0.359 0.166 0.413
Other field data −0.225 −0.671 −0.444 −0.013 0.223

Subject pool Univ. population baseline
General 0.169 −0.135 0.025 0.314 0.475
Farmer 0.400 −0.287 0.061 0.742 1.114
Other −0.075 −0.432 −0.251 0.097 0.284

Reward Hypothetical money baseline
Real money −0.056 −0.337 −0.192 0.082 0.232
Non-money −0.125 −0.458 −0.287 0.035 0.205

Method Binary choice baseline
Survey 0.289 −0.284 0.018 0.550 0.818
Matching 0.438 −0.864 −0.147 0.955 1.493
Other 0.264 −0.012 0.129 0.399 0.541

Functional form of𝑈 CRRA (same curvature) baseline
CRRA (diff curvature) −0.101 −0.392 −0.245 0.049 0.213
CARA 0.100 −0.382 −0.135 0.328 0.544
Linear 0.194 −0.180 0.021 0.362 0.535
Other −0.098 −0.481 −0.281 0.080 0.265

Reference point Zero baseline
Status quo 0.046 −0.311 −0.125 0.205 0.377
Expectation 0.070 −0.730 −0.298 0.487 0.967
Other −0.054 −0.409 −0.224 0.107 0.276

Definition of _ Tversky-Kahneman baseline
Köbberling-Wakker 0.246 −0.226 0.025 0.451 0.660
Kőszegi-Rabin 0.475 −0.661 −0.056 0.993 1.545
Other −1.068 −1.583 −1.313 −0.802 −0.483
Unknown −0.654 −1.385 −0.991 −0.335 −0.004

Continent Europe baseline
North America −0.035 −0.197 −0.114 0.046 0.132
Asia −0.049 −0.152 −0.098 0.001 0.054
South America −0.046 −0.244 −0.143 0.058 0.179
Africa −0.190 −0.443 −0.313 −0.060 0.091
Oceania −0.403 −0.622 −0.504 −0.308 −0.205
Multiple 0.039 −0.401 −0.136 0.217 0.479
Unknown −0.335 −1.053 −0.675 0.000 0.345

Publication status Published (econ) baseline
Published (non-econ) 0.000 −0.295 −0.143 0.143 0.292
Unpublished −0.248 −0.670 −0.453 −0.051 0.153
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E Frequentist Meta-Analysis

The random-effects meta-analysis (DerSimonian and Laird, 1986) assumes that

_𝑖 = `𝑖 + Y𝑖 = _0 + b𝑖 + Y𝑖, (E.1)

where Y𝑖 ∼ N(0, se2𝑖 ) is a sampling variation of _𝑖 as an estimate of `𝑖 , and the observation-
specific “true” effect `𝑖 is decomposed into _0 (the overall mean) and the sampling variation
b𝑖 . It is assumed that b𝑖 ∼ N(0, 𝜏2), where 𝜏2 is the genuine heterogeneity, beyond the mere
sampling variance, that must be estimated. Note that the random-effects model (E.1) reduces
to the fixed-effect model when 𝜏2 = 0. The random-effects estimate of _0 is calculated by the
weighted average of individual estimates:

_RE0 =

∑𝑚
𝑖=1 𝑔𝑖_𝑖∑𝑚
𝑖=1 𝑔𝑖

,

where the weight is given by 𝑔𝑖 = 1/(se2𝑖 + 𝜏2) and 𝜏2 is the estimate of 𝜏2. As we explained in
Section C.1 above, the model (E.1) is mathematically equivalent to model M1a. Note also that
our dataset includes statistically dependent estimates. In order to account for such dependency,
we use cluster-robust variance estimation to account for the correlation of estimates among
each study (Hedges, Tipton and Johnson, 2010).

We also apply three-level modeling to handle statistically-dependent estimates. Let _𝑝𝑖
denote the 𝑖th estimate of _ from paper 𝑝 . The first level is _𝑝𝑖 = `𝑝𝑖+Y𝑝𝑖 , where `𝑝𝑖 is the “true”
loss aversion coefficient and Y𝑝𝑖 ∼ N(0, se2𝑝𝑖) for the 𝑖th estimate in paper 𝑝 . The second level
is `𝑝𝑖 = _𝑝 +b (2)𝑝𝑖

, where _𝑝 is the average loss aversion in paper 𝑝 and b (2)
𝑝𝑖

∼ N(0, 𝜏2(2)). Finally,
the third level is _𝑝 = _0 + b

(3)
𝑝 , where _0 is the population average of _ and b (3)𝑝 ∼ N(0, 𝜏2(3)).

These equations are combined into a single model:

_𝑝𝑖 = _0 + b
(2)
𝑝𝑖

+ b
(3)
𝑝 + Y𝑝𝑖 . (E.2)

We estimate a random-effects model (C.1) and a multi-level model (E.2). Results are pre-
sented in Table E.1: columns (1) and (2) use the subset of data where both _ and SE are reported
(or reconstructed from other available information), and columns (3) and (4) use the full data
where missing SEs are imputed as described above.

Random-effects estimate shows the average loss aversion coefficient between 1.7 and 1.8.
The null hypothesis of no loss aversion (i.e., 𝐻0 : _ = 1) is rejected at the conventional 5% sig-
nificance level. We also look at the 𝐼 2 statistic (Higgins and Thompson, 2002), which measures
the amount of heterogeneity relative to the total amount of variance in the observed effects.
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Table E.1: Meta-analytic average of loss aversion coefficient.

SE reported All data
(1) (2) (3) (4)

Random-effects Multi-level Random-effects Multi-level
_0 1.7124 1.8854 1.8088 1.9373

(0.0874) (0.0811) (0.0761) (0.0669)
𝜏2 0.5074 0.5562
se(𝜏2) (0.0432) (0.0386)
𝐼 2 99.5940 99.5408
𝐼 2 (within paper) 15.4056 34.0376
𝐼 2 (between paper) 84.2991 65.5952
Observations 352 352 521 521
Clusters 114 114 150 150
Notes: Standard errors in parentheses are cluster-robust (Hedges, Tipton and Johnson, 2010). For observations
which have both individual-level mean and median, we keep the median. Columns (1)-(2), “SE reported”, use
the complete dataset where SEs are reported in the paper. Columns (3)-(4), “All data”, use the full dataset where
missing SEs are approximated from available information or imputed. One observation with _ = 23.46 (the
maximum value in the dataset) is excluded because the very large imputed SE produces an error in the estimation
code.

Formally, the 𝐼 2 statistic is computed by

𝐼 2 =
𝜏2

𝜏2 + 𝑠2 × 100,

where 𝜏2 is the estimated value of 𝜏2 and

𝑠2 =
(𝑚 − 1)∑𝑔𝑖

(∑𝑔𝑖)2 +
∑
𝑔2
𝑖

is the “typical” sampling variance of the observed effect sizes, where 𝑔𝑖 = 1/se2𝑖 . We observe
that 99% of the total variability in estimates is due to between-observation heterogeneity.

Taking into account the hierarchical structure of our dataset, the multi-level model pro-
vides an average loss aversion coefficient of about 1.9, which is slightly higher than the
random-effect estimates discussed above. The heterogeneity measure 𝐼 2 adapted to the multi-
level specification shows that 84% of the total variance is due to between-paper heterogeneity,
15% is due to within-paper heterogeneity, and the rest (less than 1%) is sampling variation (col-
umn (2)). The contribution of between-paper heterogeneity decreases to 66% when we use the
full dataset with imputed standard errors (column (4)).
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F Peer Prediction

During one of the early presentations of this paper at the Economic Science AssociationWorld
Meeting in Vancouver in July 2019, we elicited guesses of our meta-analytic mean estimate of
the loss aversion coefficient _. We incentivized the audience to guess correctly with a CA$50
dollar prize for the closest guess. See Figure F.2 for the entry form.

We collected 37 guesses from the audience, and 34 participants also reported their confi-
dence levels (low, medium, or high). The summary statistics of guessed mean and median are
presented in Table F.1. Of the 34 answers, 20 (58.8%) reported low confidence in their guesses,
and only one reported high confidence. The distributions of guessed means and medians by
their confidence level are shown in Figure F.1.

Table F.1: Summary statistics of guessed mean _ and median _.

Guessed statistic 𝑛 Mean SD Q1 Median Q3 Min Max
Mean _ 37 1.639 0.599 1.250 1.750 2.000 0.200 2.700
Median _ 37 1.700 0.952 1.300 1.560 1.900 0.140 5.300
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Figure F.1: Boxplots of guessed mean _ (A) and median _ (B) by confidence level.

32



World ESA Vancouver
5 July 2019
Colin F Camerer talk

Meta-analysis prediction:
$50 CAD
each for most accurate mean and median guesses

What is the best aggregate estimate of the mean and median of loss aversion coefficient
_ (will come from multiple estimates from 79 studies with reported standard errors and
52 with inferred standard errors)? No correction for publication bias or Hierarchical
Bayes.

Mean Median

Confidence (circle one)
Low Medium High

Name
(can be anonymous; name is needed if you want to get paid if you are most accu-
rate)

Figure F.2: Prediction entry form.
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