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A Technical Details on Financial Frictions

The Large Household Assumption

There is a representative household with a continuum of members of measure unity. The

household consumes, saves, and supplies labor. Within the household there are two types

of members: workers and entrepreneurs. Workers supply labor and return the wages to

the household, and they consists of every type of differentiated labor supplied to every

intermediate goods producing sector. Entrepreneurs manage intermediate goods producing

firms and return part of the firms’ profits as dividends to the household. Type j workers

and entrepreneurs work and manage firms in sector j, respectively.

A type j entrepreneur in this period remains an entrepreneur of type j in the next

period with probability κj, which is exogenously given. The average survival rate for a

type j entrepreneur is 1/(1 − κj). This finite horizon for entrepreneurs is used to ensure

that over time they do not accumulate enough net worth to fund their capital fully. When

entrepreneurs exit, they give their retained earnings, their net worth, back to the household as

dividends and become workers. A similar number of workers randomly become entrepreneurs,

keeping the relative proportion of each type fixed. The household then gives some startup

funds to its new entrepreneurs for operation. Within the family there is perfect consumption

insurance. The object of entrepreneurs is to maximize dividends.

Costly State Verification

An entrepreneur i in sector j has net worth ni
j,t+1. The optimal contract is a standard debt

contract that specifies the amount the entrepreneur can borrow, Bi
j,t+1 = Qtk

i
j,t+1−ni

j,t+1, and

the gross loan rate, zij,t+1, that the entrepreneur needs to repay. So the specified total loan

payment is zij,t+1B
i
j,t+1. The optimal contract, contingent on σj,t+1, specifies (L

i
j,t+1, ω̄j,t+1).

Note that the threshold ω̄j,t+1 satisfies

ω̄j,t+1R
k
j,t+1Qtk

i
j,t+1 = zij,t+1B

i
j,t+1,

for every entrepreneur. Since Et[ω
i
j,t+1] = 1, Rk

j,t+1Qtk
i
j,t+1 is the expected payoff by investing

capital kij,t+1, at period t, and ω
i
j,t+1R

k
j,t+1Qtk

i
j,t+1 is the realized payoff at period t+ 1.

The optimal contract that specifies the loan amount, Bi
j,t+1, and the loan payment, zij,t+1,

is equivalent to specifying the leverage, Li
j,t+1 = Qtk

i
j,t+1/n

i
j,t+1, and the threshold, ω̄j,t+1,

through the above equation given ni
j,t+1.

Denote Fjt(ω) = Pr[ωi
jt < ω] a continuous probability distribution and fjt(ω) the pdf of

ωi
jt. The zero-profit condition for the financial intermediary is
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{
(1− µj)

∫ ω̄j,t+1

0

ωfj,t+1(ω)dω︸ ︷︷ ︸
from defaulted entrepreneurs

+ ω̄j,t+1[1− Fj,t+1(ω̄j,t+1)]︸ ︷︷ ︸
loan repayment

}
Rk

j,t+1Qtkj,t+1 = Rt+1Dj,t+1,∀j.

The first component of the left part is the amount of asset seized by the financial intermediary

from defaulted entrepreneurs after paying the cost. The second component of the left part

of is the amount of repayment the financial intermediary receives from those non-defaulted

entrepreneurs.

In equilibrium, a competitive financial intermediary earns zero profit in every sector.

Note that
∑

j Dj,t+1 = Dt+1. Sum the above constraint over each sector j, we get

N∑
j=1

{
(1− µj)

∫ ω̄j,t+1

0

ωfj,t+1(ω)dω + ω̄j,t+1[1− Fj,t+1(ω̄j,t+1)]
}
Rk

j,t+1Qtkj,t+1 = Rt+1Dt+1.

To simplify the presentation, define Ωj,t+1 as the share of sector j’s profits going to the

financial intermediary at period t+ 1:

Ωj,t+1(ω̄j,t+1, σj,t+1) =

∫ ω̄j,t+1

0

ωfj,t+1(ω)dω + ω̄j,t+1[1− Fj,t+1(ω̄j,t+1)],

and µjGj,t+1 the share of sector j’s profits as default cost at period t+ 1:

µjGj,t+1(ω̄j,t+1, σj,t+1) = µj

∫ ω̄j,t+1

0

ωfj,t+1(ω)dω.

For a given σj,t+1, Ωj,t+1 is strictly concave in ω̄j,t+1, and Gj,t+1 is strictly increasing in

ω̄j,t+1. That means there exists an ω∗ such that the net payoff to the lender, Ωj,t+1−µjGj,t+1,

reaches the maximum. In equilibrium, the lender always chooses ω̄j,t+1 ∈ (0, ω∗).

For the profits in sector j at period t + 1, entrepreneurs get (1 − Ωj,t+1) share, and the

financial intermediary gets (Ωj,t+1−µjGj,t+1) share. Thus the zero-profit condition at sector

j can be written as

(Ωj,t+1 − µjGj,t+1)R
k
j,t+1Qtkj,t+1 = Rt+1Dj,t+1.

Ωj(ω̄j,t+1, σj,t+1) and Gj(ω̄j,t+1, σj,t+1) are functions of the endogenous threshold ω̄j,t+1
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and exogenous sectoral uncertainty σj,t+1.

∂Ωj(ω̄j,t+1, σj,t+1)

∂ω̄j,t+1

= 1− F (ω̄j,t+1) > 0,
∂2Ωj(ω̄j,t+1, σj,t+1)

∂ω̄2
j,t+1

= −f(ω̄j,t+1) < 0.

So Ωj(ω̄j,t+1, σj,t+1) is strictly concave in ω̄j,t+1. And

∂Gj(ω̄j,t+1, σj,t+1)

∂ω̄j,t+1

= ω̄j,t+1f(ω̄j,t+1) > 0.

Note that Dj,t+1 = Qtkj,t+1 − Nj,t+1, so
Dj,t+1

Nj,t+1
= Lj,t+1 − 1. Dividing the zero-profit

condition at sector j by Nj,t+1, we can rewrite the financial intermediary’s expected zero-

profit condition as the following:

1

Lj,t+1

= 1− Et

Rk
j,t+1

Rt+1

(Ωj,t+1 − µjGj,t+1). (A.1)

The optimal contract then maximizes each entrepreneur’s expected return,

max
Li
j,t+1,ω̄j,t+1

Et

[1− Ωj,t+1(ω̄j,t+1)]R
k
j,t+1Qtk

i
j,t+1

Rt+1ni
j,t+1

= Et[1− Ωj,t+1(ω̄j,t+1)]L
i
j,t+1

Rk
j,t+1

Rt+1

,

by choosing the leverage and the threshold, (Li
j,t+1, ω̄j,t+1), subject to the zero-profit condition

(A.1).

After solving the optimal contract for each individual, we get a linear relationship between

individual capital and net worth:

Qtk
i
j,t+1 = ψ(EtR

k
j,t+1/Rt+1)n

i
j,t+1.

Two remarks are in order here. First, after aggregating the above equation over en-

trepreneurs in sector j, it turns out that sectoral capital only depends on sectoral aggregate

net worth, and there is no need to keep track of an individual’s net worth. Second, every

entrepreneur ends up with the same leverage. So sectoral leverage can be written as the

ratio of the value of sectoral capital and sectoral net worth, Lj,t+1 =
Qtkj,t+1

Nj,t+1
.

Aggregating the equilibrium condition of individual capital and net worth gives the rela-

tionship between sectoral spread and leverage as the following:

Lj,t+1 = ψ(EtR
k
j,t+1/Rt+1).
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Rewrite the above equation gives the Eq. (2.15):

Et

Rk
j,t+1

Rt+1

= ψ−1(Lj,t+1) = φ(ω̄j,t+1, σj,t+1). (A.2)

Since Lj,t+1 is the result from the optimal contract and depends on the endogenous threshold

ω̄j,t+1 and exogenous sectoral uncertainty σj,t+1.

The exact formula of φ(ω̄j,t+1, σj,t+1) is that

φ(ω̄j,t+1, σj,t+1) =
λj,t+1

1− Ωj,t+1 + λj,t+1(Ωj,t+1 − µjGj,t+1)
,

where

λj,t+1 =
Ω′(ω̄j,t+1)

Ω′(ω̄j,t+1)− µjG′(ω̄j,t+1)
=

1− F (ω̄j,t+1)

1− F (ω̄j,t+1)− µjω̄j,t+1f(ω̄j,t+1).

At the end of period t, after the realization of ωi
jt, production, and factor payments,

an entrepreneur transfers all his or her asset into net worth, ni
t+1, by selling capital to the

capital producer. Before borrowing, (1−κj) fraction of type j entrepreneurs exit and become

workers, and upon doing so, they give their net worth back to the household as dividends.

This dividend has two purposes. First, it makes entrepreneurs’ net worth part of households’

wealth. It is thus in the interest of the representative household to instruct its entrepreneurs

to maximize expected net worth. Second, this setup ensures that entrepreneurs will not

accumulate too much net worth and end up without the need to borrow. At the same time,

a similar number of workers become type j entrepreneurs such that the relative proportion

of each type is fixed. The household then gives these new entrepreneurs and defaulted

entrepreneurs some startup funds as their net worth which they can use to borrow to buy

new capital for the next period. For simplicity, since there is no need to keep track of

individual net worth, let these startup funds for each type be we
jNj,t, where w

e
j is set at 0.01

for every sector j. This small amount of wealth is used to ensure that every entrepreneur

has positive net worth, for those who default and those new entrepreneurs. Therefore, the

law of motion for sectoral net worth is:

Nj,t+1 = κj(1− Ωjt(ω̄jt, σjt))R
k
jtQt−1kjt + we

jNj,t. (A.3)

For each sector, the relation between the interest rate spread (the difference between zj,t+1

and Rt+1) and the capital wedge (the spread between the return to capital and risk-free rate)

is:
zj,t+1

Rt+1

= ω̄j,t+1

Rk
j,t+1

Rt+1

Lj,t+1

Lj,t+1 − 1
. (A.4)
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B Proofs

Proof of Proposition 1 : From firms’ first-order condition on Mij, Eq. (2.3),

γijpjYj = piMij = piηijYi,⇒
piYi
pjYj

=
γij
ηij
.

Since piYi

pjYj
= vi

vj
, we have ηij =

γijvj
vi
. It can be written in the vector form as: η = [ 1

v
∗ v′] ◦Γ.

xl can be calculated from the relation that li =
λl
i

λl
j
lj.

∑
i

li = H =
∑
i

λli
λlj
lj =

lj
λlj

∑
i

λli ⇒
lj
H

=
λlj∑
i λ

l
i

.

For capital allocation, ki
kj

=
λk
i µ

−1
ki

λk
jµ

−1
kj

is used to solve for xkj in the same way.

Proof of Proposition 2 : From Eq. (2.1), using pjYj = vjY and kj = xkj K̄, we have

MRPKj =
λkjY

xkj K̄
= (1 + τj)r.

Denote aggregate MPK asMPKagg = α̃ Y
K̄
. Thus the relation betweenMRPKj andMPKagg

is that

MRPKj =
λkj
xkj

MPKagg

α̃
= (1 + τj)r. (B.1)

Since α̃ =
∑

i λ
k
i , and

xk
j∑
i λ

k
i
is the first-best capital allocation for producer j, rewrite

λk
j

α̃
=

xk,FB
j , and we have .

MRPKj =
xk,FB
j

xkj
MPKagg.

From Eq.(B.1),

MPKagg =
α̃xkj

λkjµ
−1
kj

r.

From Proposition 1, replacing xkj =
λk
jµ

−1
kj∑

i λ
k
i µ

−1
ki

into the above equation, we get

MPKagg =
α̃

(
∑

i λ
k
i µ

−1
ki )

× r.
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Proof of Proposition 3 : The marginal revenue product of capital is defined as

MRPKjt =
(1−mj)αjpjtYjt

kjt
.

From the relation that kjt = xkjtKt, substitute pjtYjt = vjYt in the above equation, we get

kjt
kit

=
xkjt
xkit

=
MRPKit(1−mj)αjvj
MRPKjt(1−mi)αivi

=
λkjMRPK−1

jt

λkiMRPK−1
it

.

The rest of the proof follows the same logic as in Proposition 1.

Proof of Theorem 1 & 2 : Take logarithm on sectoral production function and denote

lnYj = yj, lnAj = aj. Substitute kj with x
k
jK, lj with x

l
jH, and Mij with ηijYi:

yj =aj + (1−mj)αj ln(x
k
jK) + (1−mj)(1− αj) ln(x

l
jH) +

N∑
i=1

γij ln(ηijYi),

⇒ yj =aj + (1−mj)αj lnx
k
j + (1−mj)(1− αj) lnx

l
j +

N∑
i=1

γij ln ηij︸ ︷︷ ︸
denote this as cyj

+ (1−mj)αj︸ ︷︷ ︸
denote this as δkj

lnK

+ (1−mj)(1− αj)︸ ︷︷ ︸
denote this as δlj

lnH +
N∑
i=1

γij lnYi,

⇒ yj = aj + cyj + δkj lnK + δlj lnH +
N∑
i=1

γijyi.

The vector form of the above equation is

y =a+ cy + δk lnK + δl lnH + Γ′y,

⇒ y =[IN − Γ′]−1(a+ cy + δk lnK + δl lnH).

Replace Xj with (1 − ηj)Yj, so Y =
∏N

j=1((1 − ηj)Yj)
βj . The logarithm of Y becomes

lnY = β′ ln(1− η) + β′y. Note that β′[IN − Γ′]−1 = v′. Then

lnY = β′ ln(1− η) + v′(at + cyt)︸ ︷︷ ︸
denote these terms as ln Ãt

+v′δk︸︷︷︸
α̃

lnK + v′δh︸︷︷︸
1−α̃

lnHt.

Note that v′δk =
∑

j vj(1 − mj)αj =
∑

j λ
k
j = α̃, and v′δh =

∑
j vj(1 − mj)(1 − αj) =∑

j λ
l
j = 1− α̃. Thus log aggregate output is
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lnY = ln Ã+ α̃ ln K̄ + (1− α̃) lnH,

ln(Ã) = v′a+ λk′ lnxk + λl′ lnxl +
∑
i

βi
∑
j

(1− ηij) +
∑
j

vj
∑
i

γij ln ηij.

By direct differentiation of the above equation, we have that

d ln Ã

d lnAj

= vj +
∑
i

λki
d lnxki
d lnAj

,

and
d ln Ã

d lnµkj

=
∑
i

λki
d lnxki
d lnµkj

.

For Theorem 2, the proof is the same except that the time subscripts are added. And

xk
t is subject to shocks. So aggregate output and aggregate TFP are

lnYt = ln Ãt + α̃ lnKt + (1− α̃) lnHt,

ln(Ãt) = v′at + λk′ lnxk
t +

∑
i

βi
∑
j

(1− ηij) + λl′ lnxl +
∑
j

vj
∑
i

γij ln ηij.

C Strategy to Compute the Steady State

There are 9 + 8N + N2 equations for 9 + 8N + N2 unknowns in the main dynamic model

(there are also 2 N shocks), where N stands for the number of sectors. Here is the step

to compute the steady state of the model. All the following variables are evaluated at the

steady state.

1. From 3N equations (A.1), (A.2), and (A.3), given parameters µj, σj, κj, solve for

Rk
j , ωj, Lj, ρj(ωj) at the steady state. Q = 1

θ
δ

1−θ
θ can be solved from Eq. (2.11).

From Rk
j = (1 − mj)αjpjYj/Qkj + (1 − δ). Denote MRPKj = Q(Rk

j − (1 − δ)) =

(1 −mj)αjpjYj/kj. At this stage, we know values of MRPKj from Rk
j and Q. From

pjYj = vjY , kj = (1−mj)αjpjYj/MRPKj =
λk
j Y

MRPKj
.

2. Solve for v and η using the following formulas:

v = [IN − Γ]−1β,

η = [
1

v
∗ v′] ◦ Γ.
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Thus, λkj and λlj are known.

3. Solve for xk, xl using the following formulas:

xkj =
λkj (MRPKj)

−1∑
i λ

k
i (MRPKi)−1

xlj =
λlj∑
i λ

l
i

4. From step 1, kj =
λk
j Y

MRPKj
, so

∑
j

kj = K =
∑
j

λkj
MRPKj

Y = φkY.

and similarly, from sectoral MPL equal to the wage,

H =

∑
j λ

l
j

w
Y = φhY.

so lnK = lnφk + lnY , and lnH = lnφh + lnY . At this stage, φk is known, while φh

depends on wage w.

5. Solve for wage. Define δkj = (1 − mj)αj, and δhj = (1 − mj)(1 − αj), take log on

sectoral production technology, and write in vector form, we get

y =[IN − Γ′]−1(a+ cy + δk lnK + δh lnH)

=[IN − Γ′]−1(a+ cy + δk lnφk + δh lnφh) + 1N×1 lnY

,where cyj = (1−mj)αj lnxkj+(1−mj)(1−αj) lnxlj+
∑

i γij ln ηij, and aj = logAj = 0,

assuming Aj = 1,∀j.
Take log on Y =

∏
(1 − ηj)

βjY
βj

j =⇒ lnY = β′ ln(1 − η) + β′y, plug in y, and since

β′1N×1 = 1, lnY on both sides cancels out. We get

β′ ln(1− η) + v′(cy + δk lnφk + δh lnφh)] = 0.

In the above equation, wage is the only unknown. w is then solved numerically from

this equation, and we get φh.
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6. Solve for output Y . From the resource constraint and the Euler equation,

Y = C + I +
N∑
j=1

µjGjR
K
j Qkj = (φhY )−1/ϵσw1/σ + φkY δ

1/θ + (
∑
j

µjGjR
K
j Qxkj)φkY

=⇒[1− φkδ
1/θ − (

∑
j

µjGjR
K
j xkj)Qφk]Y = (φh)

−1/ϵσw1/σY −1/ϵσ

rewrite as AY = BY −1/ϵσ,

Y = (
B

A
)

ϵσ
ϵσ+1 .

Thus, other variables can be solved easily. The dynamic system is then solved using

the standard method of log-linearization as in Uhlig 1999.

D Discussion on σ and External Finance

The standard deviation of idiosyncratic capital returns, σ, reflects the riskiness of investment,

and there is a caveat to how we should interpret σ when we map the model into data. In the

model, σ mostly affects leverage, which is an endogenous outcome of the optimal contract.

It is the balance between the credit demand (the dependence on external finance of a sector)

and supply. Since entrepreneurs behave as if they are risk-neutral, the dependence on an

external finance channel is missing in the model. Therefore, the credit is mainly constrained

by the supply side. That is, lenders are less willing to lend if the investment return is risky—

the endogenous leverage is decreasing in σ. The calibration then maps a low leverage in the

data to high σ in the model, and vice versa. However, in the real world, a firm may have low

leverage because it does not require much external finance. It is thus important to consider

the dependence on external finance of each sector when we examine the appropriateness of

calibrated σ.

To do this, I follow the procedure described in Rajan and Zingales (1998) to construct

the Rajan-Zingales (RZ) measure of dependence on external finance for each sector.1 Table

1 reports the equilibrium leverage in data, calibrated σ, and the RZ measure, sorted by the

leverage in descending order. The RZ measure of 13 sectors ranges from 1.28 (Minging)

to 0.40 (Professional and Business), and the median is 0.53. Here, using the median as

the benchmark, sectors depend relatively more on external finance if their RZ measures are

larger than 0.53. Similarly, a sector has high (low) leverage if its leverage is larger (smaller)

1. The Rajan-Zingales measure is defined as capital expenditure minus cash flow from operations divided
by capital expenditures. To calculate this, I first took the median value of firms in each sector and year in
Compustat and then took the average from 1985 to 2012 for each sector.
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Table 1: Equilibrium leverage, σ, and dependence on external finance (RZ).

13-sector Leverage σ RZ
Utilities 2.09 0.22 0.88
Transportation 1.97 0.27 0.86
Construction 1.88 0.29 0.48
Arts, Entertainment 1.84 0.30 0.89
Other services 1.76 0.32 0.48
Wholesale 1.73 0.33 0.38
Agriculture 1.70 0.33 0.58
Education and Health Care 1.70 0.35 0.53
Retail 1.58 0.38 0.68
Information 1.50 0.43 0.48
Mining 1.45 0.43 1.28
Manufacturing 1.43 0.44 0.47
Professional and Business 1.37 0.49 0.40

than the median value of 1.7.

Since the model indicates that a high leverage sector is one with safe investment returns

(low σ), a low RZ measure (small demand) would confirm this interpretation, and a high

RZ measure suggests the model may overstate its safety. Consider the high leverage sectors,

such as the Construction sector, which has a high leverage and a low RZ measure. For these

sectors, a low value of σj is considered reasonable. But the values of σj for the Utilities,

Transportation, and Arts sectors might be underestimated.

For those low leverage sectors, the risky return interpretation (high σ) is confirmed by a

large value of the RZ measure, such as in the Mining sector. The Mining sector has a low

leverage but a high RZ measure, reflecting higher demand for external financing but relatively

smaller supply, so the risky investment interpretation—a high value of σj—is reasonable.2

But for the Information, Manufacturing, and Professional and Business sectors, one cannot

rule out the possibility that they have low leverage simply because they do not need much

external financing. The model might overestimate the values of σj for these sectors.

2. Why are investments in the Mining sector risky? An important feature in the mining and oil industries
is that their investment returns are highly related to oil price fluctuations. A plunge in the price of oil hurts
mining and energy firms’ profits and returns, and the default rate and spreads of their bonds often rise
during these periods. Kellogg 2014 points out that firms’ failures to respond to oil price volatility can lead
to a significant cost (25 percent of the value of a drilling well in Texas). Since the price of oil is volatile,
uncertainty in Mining investment returns is high, and this confirms the model’s risky return interpretation.
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E Different Levels of Disaggregation

E.1 Dispersion of Corporate Bond Spreads

In the model, the capital wedge is positively related to the credit spread. This can be shown

from Eq.(A.4) and (2.16) such that

zj,t+1

Rt+1

∝
Rk

j,t+1

Rt+1

∝ (1 + τ kj,t+1).

So the dispersion of sectoral credit spreads may serve as an indirect proxy for the dispersion

of sectoral capital wedges, which then reflect the degree of misallocation.

It is quite common that the dispersion of financial frictions at the firm level is larger

than that at the sectoral level. This implies the degree of misallocation differs at different

aggregation levels, and thus the level of aggregation matters for quantitative exercises. In

TRACE (2020), trades of corporate bonds are reported at the firm level, and the total number

of firms in the sample period is 806. Table 2 reports the cross-sectional standard deviation

of the calculated time average of corporate bond spreads at different disaggregation levels

(excluding industries in the FIRE and Government sectors). However, note that in Eq.(A.4),

credit spread is also affected by the endogenous threshold ω̄ and leverages. It is important to

note that although credit spread dispersion is related to misallocation, it does not necessarily

mean that higher credit spread dispersion indicates more misallocation. After all, the level

of misallocation depends on the interaction among all three financial parameters.

Table 2: Standard deviations of spreads at different disaggregation levels.

NAICS Digit (Number of Industries/Firms) Standard Deviation of Spreads
NAICS 2 (13) 0.00392
NAICS 3 (48) 0.00613
NAICS 4 (97) 0.00719
NAICS 6 (221) 0.00740

806 Firms 0.00809

E.2 Impulse Responses of Aggregate TFP

This subsection shows how the calibrated model responds to the financial discrepancy at

the NAICS two-digit (13), three-digit (48), and four-digit (97) disaggregation levels. The
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credit spreads are recalculated from TRACE (2020), and the leverages are recalculated from

Compustat (2020). All parameters are then recalibrated at different levels of disaggregation.

From Theorem 2, the direct impact of capital misallocation is on TFP through the

allocative inefficiency channel:

d ln Ãt ∝ λk′d lnxk
t .

Figure 1 depicts the impulse response functions of TFP at 13, 48, and 97 industries under an

aggregate uncertainty shock at 10%. The shock hits the model economy at period 0. Since

capital is pre-determined, the effect of capital reallocation shows up at a period later. We

can see that the financial discrepancy at different disaggregation level manifests itself in the

impact on TFP. The drop in TFP at 97 industries (0.27%) is 2.7 times larger than that at

the 13-sector level (0.1%).

0 2 4 6 8 10 12 14 16

-0.25

-0.2

-0.15

-0.1

-0.05

0
TFP at three level of disaggregation

13 Sectors
48 Industries
97 Industries

Figure 1: Impulse Response of TFP at three level of disaggregation

Figure 2 draws the impulse response functions of TFP and aggregate output between the

IO and IM economy under a systematic uncertainty shock of 10%. As we look at the finer

levels of disaggregation, the degree of capital misallocation increases, and both TFP and

aggregate output demonstrate larger drops. The contribution of TFP to output drops in the

IO economy are 14.7% at the 13-sector level, 22.4% at the 48-industry level, and 32.4% at

the 97-industry level.
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Figure 2: Impulse response functions of the IO and IM economy under an aggregate uncer-
tainty shock

F Robustness

F.1 Varying Labor Supply Elasticity

Table 3 reports the aggregate TFP and output multiplier of uncertainty shocks, with different

values of the Frisch elasticity of labor supply, ϵ. It shows that while the magnitude of output

multiplier decreases with the Frisch elasticity, the magnitude of the TFP amplifier is robust

the different values of the Frisch elasticity of labor supply.

F.2 Input-Output Multipliers at Different Disaggregation Levels

The Aggregate Input-Output Multiplier of Productivity Shocks

In Table 4, the four disaggregation levels correspond to the two-digit, three-digit, four-

14



Table 3: The network multiplier on TFP and Y with different values of the Frisch elasticity
of labor supply.

48 Sectors υσ=∆ lnTFP ∆ lnY
ϵ=0.5 1.5844 1.1546
ϵ=2 1.5855 1.1087
ϵ=3 1.5858 1.1025
ϵ=4 1.5859 1.0993

Table 4: Empirical input-output multiplier of productivity shocks at four disaggregation
levels.

Number of Industries υA
NAICS 2 (13) 1.68
NAICS 3 (48) 1.77
NAICS 4 (97) 1.58
NAICS 6 (221) 1.58

digit, and six-digit NAICS level. This multiplier is simply the sum of Domar weights,

υA =
∑

j vj. The input-output multipliers of productivity shocks are similar across different

disaggregation levels, slightly smaller at the NAICS 4 and 6 digit level.

The Aggregate Input-Output Multiplier of Uncertainty Shocks

Table 5: The network TFP multiplier of uncertainty shocks.

Number of Sectors υσ=∆ lnTFP
13 1.73
48 1.58
97 1.42

Table 5 lists the input-output multipliers at three levels of disaggregation.

G Capacity Utilization

In this section, I add the capital capacity utilization into the model and analyze its effect as

well as the impulse response functions. The functional form of capacity utilization is from
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Christiano, Motto, and Rostagno (2014). By adding capacity utilization, the total return

from capital in Eq (2.8) is adjusted as:

RK
jt =

[ujtr
k
j,t+1 − aj(ujt)] +Qt+1(1− δ)

Qt−1

, (G.1)

where rkj,t+1 is capital rent in Eq (2.3), ujt is capacity utilization rate of sector j at time t,

the convex function aj represents the cost of capital utilization. In this set up, the choice of

capacity utilization that maximized return from capital is independent of the entrepreneurs’

net worth. The functional form of aj is

aj(ujt) = rkj,ss[exp(σa(ujt − 1))− 1]
1

σa
,

where the parameter σa captures the curvature of utilization cost, and rkj,ss is the steady

state value of capital rent of sector j.

The sectoral production function becomes

Yjt = Ajt(ujtx
k
jtKt)

αjmj(xljHt)
(1−αj)(1−mj)Π(ηijYit)

γij .

The aggregate production function is Yt = ÃtK
α̃
t H

1−α̃
t . The capacity utilization is included

in aggregate TFP, so

ln Ãt = v′d lnAt + λk′d lnxk
t + λk′d lnut.

First, to show how the direction of capacity utilization and misallocation may differ, I

consider the case of inelastic labor supply. Figure 3 depicts the impulse response functions

of a systematic uncertainty shock hitting the IO economy with inelastic labor supply and

capacity utilization. While misallocation induces negative TFP response, the effect of ca-

pacity utilization on TFP is positive. When labor is fixed, firms with capital outflow would

increase their capacity utilization rate. This two opposite effects counteract with each other,

and the response of aggregate output is small.

Figure 4 and 5 depict the impulse response functions with elastic labor supply in the IO

and IM economy, respectively. When labor supply is elastic, the usage of capacity utilization

declines with labor. The IO economy demonstrates a stronger decrease in aggregate TFP

due to misallocation (-0.18% in IO and -0.11% in IM) and capacity utilization (-0.4% in

IO and -0.18% in IM). In the IO economy, the aggregate output drops in the zero and first

period are 1.64% and 1.17%. In the IM economy, the aggregate output drops in the zero
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Figure 3: Impulse response functions of the IO economy with capacity utilization and in-
elastic labor supply. The bottom left panel “Agg TFP” represents the change of aggregate
TFP due to misallocation. The bottom right panel “Agg TFP capacity” is the change of
TFP due to changes in capacity utilization.
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Figure 4: Impulse response functions of the IO economy with capacity utilization. The bot-
tom middle panel “Agg TFP” represents the change of aggregate TFP due to misallocation.
The bottom right panel “Agg TFP capacity” is the change of TFP due to changes in capacity
utilization.

and first period are 0.9% and 0.8%.
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Figure 5: Impulse response functions of the IO economy with capacity utilization. The bot-
tom middle panel “Agg TFP” represents the change of aggregate TFP due to misallocation.
The bottom right panel “Agg TFP capacity” is the change of TFP due to changes in capacity
utilization.
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H A Static Model with General Distortions

Consider the same environment as in Section 2.1, but now with exogenous wedges on inputs

and factor markets. So the intermediate goods producing firm of sector j’s problem is

adjusted as the following:

max
lj ,Mij ,kj

pjYj − (1 + τ kj )rkj − (1 + τ lj)wlj −
N∑
i=1

(1 + τmij )piMij,

where τ kj , τ
l
j and τ

m
ij represent wedges on capital, labor and intermediate inputs for each sector

j. r is the rental rate of capital, which includes both a real interest rate and a depreciation

rate. w is wage. So far I suppose the rental rate and wage are the same across sectors. From

the first order conditions, we can infer distortions as follows:

1 + τ lj =
(1− αj)(1−mj)pjYj

wlj
, (H.1)

1 + τ kj =
αj(1−mj)pjYj

rkj
, (H.2)

1 + τmij =
γijpjYj
piMij

, (H.3)

From the market clearing condition, Yj = Xj +
∑N

i=1Mji, and the Eq. (H.3), we can solve

for v:

vj = βj +
N∑
j=1

(1 + τmji )
−1γjivi.

Or, in the vector form,

v = [IN − (1 + τm)
−1 ◦ Γ]−1β , (H.4)

where τm = {τmij } is the matrix of distortions in intermediate inputs markets. Now Domar

weights is affected by intermediate input wedges, τm.

The optimal allocation variables are the following:

η =(1/v ∗ v′) ◦ Γ ◦ (1 + τm)
−1, (H.5)

xkj =
λkj (1 + τ kj )

−1∑N
i=1 λ

k
i (1 + τ ki )

−1
, (H.6)

xlj =
λlj(1 + τ lj)

−1∑N
i=1 λ

l
i(1 + τ li )

−1
, (H.7)

Finally, by substituting kj = xkjK, lj = xljH, and Mij = ηijYi into sectoral production
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functions and aggregate output, we can solve for an aggregate production function as in

Theorem 1, and all distortions aggregate up into aggregate TFP.

Proposition 4. The solution for aggregate output is

Y = Ã(τm, τm, τl)K
α̃H1−α̃,

where

ln Ã = β′ ln(1− η) + v′a+ λk lnxk + λl lnxl + v′(Γ′ lnη).

And aggregate TFP change is

d ln Ã = v′ lna+ λkd lnxk + λld lnxl + v′(Γ′d lnη).

The aggregate TFP, Ã, is a complex function of distortions, sectoral gross productivity,

Domar weights, and other technological parameters. Domar weights is now a function of

intermediate input wedges, v(τm). Capital allocation depends on capital wedges, λk(τ k).

And labor allocation depends on labor wedges, λl(τ l). Note that there is an identification

issue on τm, since the observed intermediate input share is
piMij

pjYj
= γij(1 + τmij )

−1. Without

more information on τm, we cannot identify it from the observed
piMij

pjYj
.
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