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Export-Platform FDI: Cannibalization or Complementarity?

Pol Antràs, Evgenii Fadeev, Teresa C. Fort and Felix Tintelnot

Online Appendix

In this Appendix, we present details that were omitted from the main text. We provide
proofs for the three Propositions in the paper, and for other results claimed (without proof)
in the main text.

A1. Formal Definition of Price Indexes

Denoting by pi(ϕ, k) the price charged for variety k, the overall price index pi(ϕ) for
varieties sold by firm ϕ is given by

(A1) pi(ϕ) =

(∑
k∈K

pi(ϕ, k)1−ε

) 1
1−ε

.

The economy-wide ideal price index is in turn given by

(A2) Pi =

(∫
ϕ∈Ωi

pi(ϕ)1−σdϕ

) 1
1−σ

.

A2. Optimal Prices

In this Appendix, we show that firms have an incentive to charge a constant markup
over marginal cost for its goods, with the markup being governed by the cross-firm demand
elasticity σ.

To simplify matters, we assume, without loss of generality, that P σ−1
i Ei = 1. Because

we focus throughout on a firm-level problem, we often omit ϕ subscripts in variables that
are firm-specific, to make the notation a bit less cumbersome.

A firm solves the following problem in each market i:

(A3)
max
qi(k)

∑
k∈K

(pi(k)− ci(k)) · qi(k)

s.t. qi(k) = pi(k)−εpε−σi

where K is the set of active assembly plants, ci(k) is the marginal cost of production from
plant k when selling to market i, and

pi =

(∑
k∈K

pi(k)1−ε

) 1
1−ε

,

as indicated in equation (A1). The constraint in (A3) can easily be derived from equation
(3) after setting P σ−1

i Ei = 1.
It is straightforward to verify that:

∑
k∈K

pi(k) · qi(k) = pi · qi where qi ≡
(∑
k∈K

qi(k)
ε−1
ε

) ε
ε−1

= p−σi .
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Therefore, problem (A3) can be written as a one-dimensional profit maximization

(A4) max
qi

q
1− 1

σ

i − ci · qi,

where the marginal cost ci for producing a bundle qi is obtained from cost minimization:

ci = min
qi(k)

∑
k∈K

ci(k) · qi(k)

s.t.

(∑
k∈K

qi(k)
ε−1
ε

) ε
ε−1

= 1.

(A5)

Solving (A4) and (A5), and substituting optimal qi and {qi(k)}k∈K into the demand equa-
tions in (A3) gives the following optimal prices

(A6) pi(k) =
σ

σ − 1
ci(k) and pi =

σ

σ − 1
·
(∑
k∈K

ci(k)1−ε

) 1
1−ε

,

which are a constant markup σ/ (σ − 1) over marginal cost.

A3. Expressions in the Main Text

In this Appendix, we explicitly derive the key expressions in the main text. We begin by
using the optimal prices in (A6) to derive sales from plant k to market i (we again omit ϕ
subscripts, for simplicity).

Starting with equation (3) in the main text, we obtain:

Ski = pi(k)1−εpε−σi P σ−1
i Ei =

(
σ

σ − 1

)1−σ

Iak · ci(k)1−ε ·
(∑
k∈J

Iak · ci(k)1−ε

)σ−ε
ε−1

· P σ−1
i Ei,

where Iak = 1 if a firm paid fixed costs of assembly in location k ∈ J , and Iak = 0 otherwise.
For a firm with productivity ϕ, the marginal costs are

ci(k) =
1

ϕ
· wk
Zak
· τaki,

thereby delivering the expression in equation (4) in the main text.

The overall profit for firm ϕ, equation (6), is

π(ϕ) =
1

σ

∑
i∈J

∑
k∈J

Ski = κπϕ
σ−1

∑
i∈J

P σ−1
i Ei · (Ψi(ϕ))

σ−1
ε−1 −

∑
k∈J

Iak · wkfak ,

where κπ = 1
σ

(
σ
σ−1

)1−σ
, Iak = 1 if k ∈ K(ϕ), and

Ψi (ϕ) =
∑
k∈J

Iak · ξak (τaki)
1−ε

.
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With firm-level fixed costs of exporting, the profit function, equation (7), is

π(ϕ) = κπϕ
σ−1

∑
i∈J

Ixi · P σ−1
i Ei · (Ψi(ϕ))

σ−1
ε−1 −

∑
i∈J

Ixi · wifxi −
∑
k∈J

Iak · wkfak .

In section IV of the main text, we introduce tradable intermediate inputs. Formally, we
assume that firm ϕ has the following production

Fϕ (`,Qs) =
ϕ

(1− α)1−ααα
`1−αQ1−α

s ,

where ` is labor, and Qs is a bundle of inputs

Qs =

(∑
j∈J

Isj ·
(
qsj
) ρ−1

ρ

) ρ
ρ−1

where Isj = 1 if j ∈ J (ϕ) and ρ > 1.

This production function has the following marginal costs

ci(ϕ, k) =
1

ϕ
·
(
wk
Zak

)1−α

·
(∑
j∈J

Isj ·
(
wjτ

s
jk

Zsj

)1−ρ
) α

1−ρ

.

Substituting these marginal costs into the optimal prices in (A6) we get the sales from
plant k to market i, written in equation (8) in the main text.

Finally, the profit function with intermediate inputs can be written as

π (ϕ) = κπϕ
σ−1

∑
i∈J

P σ−1
i Ei · Λi(ϕ)−

∑
j∈J

Isj · wjf sj −
∑
k∈J

Iak · wkfak ,

where

Λi(ϕ) =

∑
k∈J

Iak · (ξak)
1−α

(τaki)
1−ε ·

(∑
j∈J

Isj · ξsj
(
τ sjk
)1−ρ)α(ε−1)

ρ−1


σ−1
ε−1

and

ξak =

(
wk
Zak

)1−ε

and ξsj =

(
wj
Zsj

)1−ρ

.

A4. Relaxing the Armington Assumption

In section II of the main text, we argue that our main results are not dependent on the
Armington assumption implicit in equation (2). We prove this claim in this Appendix.

Labor Substitutability in the Armington Model

We first demonstrate that, in our baseline model, ε corresponds to the within-firm elas-
ticity of labor substitution across an MNE’s plants. In that model, when figuring out the
optimal way to allocate labor across plants to sell goods in market i, for a given assembly



10 PAPERS AND PROCEEDINGS MONTH YEAR

strategy K, the firm solves the following problem

ci = min
{`k,i(ν)}

∑
k∈K

wk`k,i

s.t.

 ∑
k∈K(ϕ)

qi (k)
ε−1
ε

 ε
ε−1

= 1 (bundle of products)

s.t. qi(k) =
Zak
τaki
· `k,i (production technology).

The solution to this problem delivers the following cost function

(A7) ci =

 ∑
k∈K(ϕ)

(
τaki
wk
Zak

)1−ε
 1

1−ε

.

Define the conditional elasticity of labor demand in location k to changes in location l as

E ik,l =
∂`k,i
∂wl

wl
`k,i

,

and define the share of variable labor costs associated with selling goods to i paid to labor
in location l as:

Sil =
wl`l,i
ci

=
wl`l,i∑

k∈K
wk`k,i

.

The Allen partial elasticity of substitution is defined as

εik,l ≡
E ik,l
Sil

.

For our CES-Armington cost function in (A7), we can invoke Shephard’s lemma to find:

(A8) `k,i =
∂ci
∂wk

= (ci)
ε

(
τaki
Zak

)1−ε

(wk)
−ε
.

The conditional elasticity of labor demand in location k to changes in location l is thus

E ik,l =
∂`k,i
∂wl

wl
`k,i

=

(
τaki
Zak

)1−ε

ε (ci)
ε−1 ∂ci

∂wl
(wk)

−ε wl
`k,i

Invoking Shephard’s lemma and plugging in (A8) delivers

E ik,l = ε
wl`l,i
ci

,

so the Allen partial elasticity of labor substitution across plants is

εik,l ≡
E ik,l
Sil

= ε.
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It is also simple to see from equation (A8) that, for two locations k and l,

`k,i
`l,i

= (ci)
ε

(
τaki/Z

a
k

τali/Z
a
l

)1−ε(
wk
wl

)−ε
and thus ε also corresponds to the more traditional Hicks elasticity of substitution, defined
as

Ẽ ik,l =
∂ ln (`k,i/`l,i)

∂ ln (wl/wk)
.

It is important to stress that ε measures the intensive-margin elasticity of labor substi-
tution, taking as fixed the location of the various plants and without consideration to the
labor investments that might have been incurred when setting up those plants.

Labor Substitutability with Productivity differences à la Eaton-Kortum

We next explore the robustness of our results to a version of our model in which goods
are not differentiated based on where they are produced. This version constitutes a simple
extension of the model in Tintelnot (2017).

There is an endogenous measure Ωi of manufacturing firms selling goods in country i.
As in Tintelnot (2017), each of these firms produces and sells a continuum of measure one
of varieties of manufactured goods. We continue to index firms by ϕ and varieties within
firms by ω. We assume a nested-CES structure in which the degree of substitutability σ
across varieties produced by different firms, and the degree of substitutability σw across
varieties produced by the same firm may differ from each other:

UMi =

 ∫
ϕ∈Ωi

(∫ 1

0

qi (ϕ, ω)
(σw−1)/σw dω

) σw
σw−1

(σ−1)
σ

dϕ

σ/(σ−1)

, σw, σ > 1.

These preferences imply that consumers in country i spend a share

(A9) si(ϕ) =

(
pi(ϕ)

Pi

)1−σ

Ei

of their income on firm ϕ. In this expression, Ei is total spending on manufactured goods
in country i ∈ J ,

(A10) pi(ϕ) =

 1∫
0

pi(ϕ, ω)1−σwdv


1

1−σw

is the overall price index for varieties sold by firm ϕ, and Pi is the economy-wide ideal price
index in country i (given again by equation (A2)). Note that, as in our baseline model, σ
continues to govern the cross-firm elasticity of demand faced by firm ϕ.

On the production side, we let firms produce their continuum of products in multiple
countries. Given fixed costs of assembly (identical to those in our baseline model), firms
will typically produce only in a subset of all countries in the world, and we denote this
set K ⊆ J as the firm’s global assembly strategy. Shipping final goods from country k to
country i entails variable (iceberg) trade costs τaki. In line with our baseline model and
with Tintelnot (2017), we abstract from fixed costs of exporting.

The marginal cost for firm ϕ to produce units of final-good variety ω in country k is
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given by

(A11) c (ϕ, k, ω) =
1

ϕ

1

zk (ϕ, ω)
wk,

where zk (ϕ, ω) is a firm- and location-specific labor productivity term. Following Tintelnot
(2017), we assume that these firm- and location-specific assembly productivity shifters are
drawn from the following Fréchet distribution:

(A12) Pr(1/zk (ϕ, ω) ≥ a) = e−(Zaka)θ , with Zak > 0.

Zak governs the average productivity of plant k, while θ determines the dispersion of pro-
ductivity draws across final-good varieties, with a lower θ indicating a higher variance,
and thus greater benefits from producing final-good varieties in various locations. To en-
sure a well-defined solution, we follow Tintelnot (2017) in imposing a lower bound on the
dispersion in the final-good productivity draws zk (ϕ, ω):

Technical Assumption: σω − 1 < θ.

Following the derivations in Tintelnot (2017), it is possible to show that this Eaton-
Kortum formulation results in a marginal cost for firm ϕ of selling its bundle of goods to
market i, which is given by

(A13) ci (ϕ) = κ ·

 ∑
k∈K(ϕ)

(
τaki
wk
Zak

)−θ−1/θ

,

where κ is a constant. As claimed in the main text, this marginal cost is identical (up to a
constant) to that in equation (A7), with θ replacing ε−1. Because firms charge a constant
markup σ/ (σ − 1) over this marginal cost, the rest of the equilibrium conditions of this
version of our model, i.e., the analogues of equations (4)–(6), are identical to those in the
main text with θ replacing ε − 1. The isomorphism between (A7) and (A13) also makes
it clear that the Allen partial elasticity of labor substitution across plants is now given
by θ + 1, and whether assembly locations are complements or substitutes depends on the
relative size of the (cross-firm) demand elasticity σ and this labor substitution elasticity
θ + 1.

It is also worth pointing out that Tintelnot (2017) focused on symmetric CES preferences
with a common degree of substitutability across varieties produced by different firms and
across varieties produced by the same firm, or σ = σω. The technical assumption σω−1 < θ
then led him to assume σ − 1 < θ, which implies that assembly locations were necessarily
substitutes in his framework. But if σω < σ, under our more general nested CES structure,
it is perfectly possible for assembly locations to be complements (σ−1 > θ) while ensuring
a well-defined firm-level problem (σω − 1 < θ).

A More General Production Structure

We finally consider a more general production structure that encompasses to two models
developed above and more general settings. We focus on the problem of a firm that
produces a set of varieties V (for simplicity we drop firm-specific subscripts). For each
destination i ∈ J , varieties are bundled according to

Qi = Fi
(
{qi(ν)}ν∈V

)
,
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and consumers have CES preferences over Qi across firms, with elasticity of substitution σ.
Each variety is produced using labor from different locations in the firm’s global assembly
strategy according to

qi(ν) = F ν
i

(
{`k,i(ν)}

k∈K

)
.

The operating profit function (excluding fixed costs) can be written as

πo = κ ·
∑
i∈J

c1−σ
i · P σ−1

i Ei

where ci is the marginal cost of producing a bundle of goods to be sold in destination i.
These marginal costs come from a cost-minimization problem:

ci = min
{`k,i(ν)}

∑
ν∈V

∑
k∈K

wk`k,i(ν)

s.t. Fi
(
{qi(ν)}ν∈V

)
= 1 (bundle of products)

s.t. qi(ν) = F ν
i

(
(`k,i(ν))

k∈K

)
(production technology)

We shall say that assembly locations are (local) substitutes if ∂2πo

∂wk∂wl
< 0 and (local)

complements if ∂2πo

∂wk∂wl
> 0 for k 6= l.2 To compute these expressions, we calculate

∂2c1−σ
i

∂wk∂wl
=

∂

∂wl

[
(1− σ)c−σi ·

∂ci
∂wk

]
=

∂

∂wl

[
(1− σ)c−σi · `k,i

]
=

= (1− σ) ·
[
c−σi

∂`k,i
∂wl

− σ · c−σ−1
i `l,i · `k,i

]
where we use Shephard’s lemma to derive the total demand for labor from location k,
∂ci
∂wk

=
∑
ν∈V

`k,i(ν) ≡ `k,i, and location l, ∂ci
∂wl

=
∑
ν∈V

`l,i(ν) ≡ `l,i.

It thus follows that assembly locations are (local) substitutes or complements, respec-
tively, if

(A14) min
i,l,k

{E ik,l
Sil

}
> σ or max

i,l,k

{E ik,l
Sil

}
< σ,

where E ik,l is the elasticity of substitution of conditional demand for labor in location k
with respect to the price of labor in location l, and Sil is share of spending on labor from l
in total spending on labor from different countries to serve market i:

E ik,l =
∂`k,i
∂wl

wl
`k,i

and Sil =
wl`l,i
ci

=
wl`l,i∑

k∈K
wk`k,i

.

In sum, we have that assembly locations are (local) substitutes or complements, respec-
tively, if

min
i,l,k

{
εik,l
}
> σ or max

i,l,k

{
εik,l
}
< σ,

where εik,l is the (Allen) partial elasticity of substitution of labor across locations k and l,
when producing goods for sale in market i.

Special Cases. The Armington setting in the main text corresponds to the following

2We assume that wages are firm-specific, so the aggregate demand Pσ−1
i Ei is constant.
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assumptions

V = K

Fi ({qi(ν)}) =

(∑
ν∈K

qi(ν)
ε−1
ε

) ε
ε−1

qi(ν) = Zak,i · `k,i(ν) for ν = k and Zak,i =
Zak
τak,i

> 0

qi(ν) = 0 for ν 6= k,

while the setting in Tintelnot (2017) (extended to nested CES preferences) corresponds to3

V = [0, 1]

Fi ({qi(ν)}) =

 1∫
0

qi(ν)
ε−1
ε


ε
ε−1

qi(ν) =
∑
k∈K

Zak,i(ν) · `k,i(ν).

A5. Proofs of Propositions 1-3

Notation

Consider the general problem with firm- and plant-level fixed costs. Denote by Ixi = 1 if
a firm paid firm-level fixed costs of marketing to destination i, wif

x
i , and Ixi = 0 otherwise;

by Isj = 1 if a firm paid firm-level fixed costs of importing from sourcing location j, wjf
s
j ,

and Isj = 0 otherwise; by Iak = 1 if a firm paid firm-level fixed costs of assembly in location
k, wkf

a
k , and Iak = 0 otherwise; by Ixki = 1 if a firm paid plant-destination specific fixed

costs of exporting from plant k to destination i, wif
x
ki, and Ixki = 0 otherwise; by Isjk = 1

if a firm paid sourcing-assembly specific fixed costs of importing from sourcing location j
to assembly plant k, wjf

s
jk, and Isjk = 0 otherwise.

We denote by Ia = (Ia1 , . . . , IaJ) the vector of optimal decisions for assembly locations

under ξa, and by Îa = (Îa1 , . . . , ÎaJ) the optimal solution under ξ̂a. In a similar way, we

denote by Ix, Is, Îx, Îs the vectors of optimal decisions for exporting and sourcing. We
also denote by Ia−k and Îa−k the vectors Ia and Îa without elements Iak and Îak , respectively.
For vectors X and Y , we say that X ≥ Y if Xi ≥ Yi for all i, and X > Y if X ≥ Y and
Xj > Yj for some j.

In all propositions, we assume that ξak > 0 and ξsj > 0 for all k ∈ J and j ∈ J .

3We replaced the sum with an integral.
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General Profit Function

Consider the general profit function with firm- and plant-level fixed costs:

π = κπϕ
σ−1 ·

Destinations︷ ︸︸ ︷∑
i∈J

Ixi · EiP σ−1
i

∑
k∈J

Assembly︷ ︸︸ ︷
Ixk,iIak · ξak (τaki)

1−ε


Sourcing︷ ︸︸ ︷∑

j∈J

Isj,kIsj ξsj
(
τ sjk
)1−ρ

µ
θ

−

−
∑
i∈J

∑
k∈J

Ixk,i · wifxk,i −
∑
k∈J

∑
j∈J

Isj,k · wjfxj,k︸ ︷︷ ︸
Plant-Level FC

−
∑
i∈J

Ixi · wifxi −
∑
k∈J

Iak · wkfak −
∑
j∈J

Isj · wjf sj︸ ︷︷ ︸
Firm-Level FC

,

(A15)

where

θ =
σ − 1

ε− 1
and µ =

α(ε− 1)

ρ− 1
.

If σ ≥ ε and α(ε − 1) ≥ ρ − 1, then the profit function in (A15) is supermodular in
(I ′, I ′′) and has increasing differences in (I, ξak), where I ′ and I ′′ are two any indicator
variables in (A15). Therefore, by Topkis’ Theorem

If ξ̂ak ≥ ξak , then Î ≥ I.

As shown below, this result will suffice to prove all Propositions for the case of σ ≥ ε and
α(ε− 1) ≥ ρ− 1.

Proposition 1

In our baseline model without fixed costs of exporting or intermediate inputs, a firm
solves the following problem:

(A16) max
Ia

π (Ia; ξa) = κπϕ
σ−1 ·

∑
i∈J

EiP
σ−1
i

[∑
k∈J

Iak · ξak (τaki)
1−ε

]σ−1
ε−1

−
∑
k∈J

Iak · wkfak ,

which is a special case of (A15) under µ = 0 and all fixed costs equal to zero except for
the assembly ones, fak > 0. We prove the following proposition:

PROPOSITION 1: Consider the problem in (A16) and an increase in the assembly po-

tential of plant k, ξ̂ak > ξak , holding other parameters and P σ−1
i Ei fixed. If ε ≤ σ, then

Îa ≥ Ia. If ε > σ and Ia is a unique solution, then Îak ≥ Iak , and it is not possible that

Îa−k > Ia−k.

PROOF:
For the case ε ≤ σ, we can apply Topkis’ theorem.
Consider the case ε > σ. If Ia is an optimal solution under ξa = (ξa1 , . . . , ξ

a
k , . . . , ξ

a
J),

then
π(Ia; ξa) ≥ π(Ĩa; ξa) for all Ĩa ∈ 2J .

To prove that Îak ≥ Iak , assume, by contradiction, that Îak = 0 < Iak = 1. Notice that

π
(
Iak = 1, Ia−k; ξa

)
is increasing in ξak while π

(
Iak = 0, Ĩa−k; ξa

)
is independent of ξak for all

Ĩa−k and ξa−k, where ξa−k is vector ξa without an element ξak . Therefore,

π(Iak = 1, Ia−k; ξ̂a) > π(Iak = 1, Ia−k; ξa) ≥ π(Îak = 0, Îa−k; ξa) = π(Îak = 0, Îa−k; ξ̂a),
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which is a contradiction. Therefore, Îak ≥ Iak .

For the second part, suppose, by contradiction, that Îa−k > Ia−k. Consider three cases.

First, suppose that Iak = 1. Then, Îak = 1, and
(A17)

π
(
Îak = 1, Îa−k; ξ̂a

)
− π

(
Iak = 1, Ia−k; ξ̂a

)
< π

(
Îak = 1, Îa−k; ξa

)
− π

(
Iak = 1, Ia−k; ξa

)
≤ 0,

where the the first inequality comes from Îa−k > Ia−k and ε > σ, and the second inequality

comes from the optimality of Ia under ξa. This inequality contradicts the optimality of Îa
under ξ̂a.

Second, suppose that Îak = 0. Then, Iak = 0, and Îa should be the optimal solution under

both ξa and ξ̂a. This result contradicts the uniqueness of the solution.

Finally, suppose that Iak = 0 and Îak = 1. The optimality of Ia under ξa implies

π
(
Îak = 1, Îa−k; ξa

)
− π

(
Iak = 1, Ia−k; ξa

)
≤ π

(
Îak = 1, Îa−k; ξa

)
− π

(
Iak = 0, Ia−k; ξa

)
≤ 0.

Combining this inequality with (A17), we get a contradiction for the optimality of Îa:
π
(
Îak = 1, Îa−k; ξ̂a

)
< π

(
Iak = 1, Ia−k; ξ̂a

)
. �

Note: If parameters in (A15) are randomly drawn from continuous distributions, the
solution is generically unique. To see the problem with multiple solutions, consider the
following example. There are two plant decisions and one market with κπϕ

σ−1EiP
σ−1
i = 1.

Suppose that w1f
a
1 = 100, w2f

a
2 = 1, ξa2 = 1, τa1i = τa2i = 1, and we consider a change from

ξa1 = 1 to ξ̂a2 = 2. The firm chooses Ia1 = Îa1 = 0, it is indifferent between Ia2 = 1 and

Ia2 = 0 under ξa1 , and between Îa2 = 1 and Îa2 = 0 under ξ̂a1 . Therefore, we might have

Ia2 = 0 and Îa2 = 1 due to multiplicity, leading to Îa−1 > Ia−1 for ξ̂a1 > ξa1 . If we specify a
solution selection, the proposition can be refined for the case with multiple solutions, for
instance, by always choosing the solution with the largest number of active plants.

Proposition 2

We add firm-level exporting fixed costs. A firm solves the following problem:

(A18) max
Ia,Ix

κπϕ
σ−1 ·

∑
i∈J

Ixi ·EiP σ−1
i

[∑
k∈J

Iak · ξak (τaki)
1−ε

]σ−1
ε−1

−
∑
i∈J

Ixi ·wifxi −
∑
k∈J

Iak ·wkfak ,

which is a special case of (A15) under µ = 0 and all fixed costs equal to zero except assembly
and firm-level exporting ones, fak > 0 and fxi > 0. We prove the following proposition:

PROPOSITION 2: Consider the problem with firm-level fixed costs of exporting (A18)

and an increase in the assembly potential of plant k, ξ̂ak > ξak , holding other parameters and

P σ−1
i Ei fixed. If ε ≤ σ, then Îa ≥ Ia. If ε > σ, then it is possible that Îa−k > Ia−k.

PROOF:
For the case ε ≤ σ, we can apply Topkis’ theorem.
Consider the case ε > σ, it is sufficient to construct an example in which a rise in ξak

leads to an opening of assembly plants in l 6= k. For simplicity, we assume that there is
only one feasible destination market i, with τaki′ =∞ for i′ 6= i. Suppose that all assembly
fixed costs are very small and equal to δ > 0. The firm-level fixed cost of exporting to i is
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such that

κπϕ
σ−1 · EiP σ−1

i ·
(
ξak (τki)

1−ε
+
∑
l 6=k

ξal (τali)
1−ε

)σ−1
ε−1

< wif
x
i

κπϕ
σ−1 · EiP σ−1

i ·
(
ξ̂ak (τki)

1−ε
+
∑
l 6=k

ξal (τali)
1−ε

)σ−1
ε−1

> wif
x
i .

For sufficiently small δ, an increase in ξak leads from an optimum with no assembly plants
to the optimum in which all plants are activated. �

Proposition 3

We add firm-level importing fixed costs. A firm solves the following problem:

max
Ia,Is

κπϕ
σ−1 ·

∑
i∈J

EiP
σ−1
i

∑
k∈J

Iak · ξak (τaki)
1−ε ·

(∑
j∈J

Isj · ξsj
(
τ sjk
)1−ρ)α(ε−1)

ρ−1


σ−1
ε−1

−

−
∑
j∈J

Ixj · wjf sj −
∑
k∈J

Iak · wkfak ,

(A19)

which is a special case of (A15) under µ > 0 and all fixed costs equal to zero except assembly
and firm-level importing ones, fak > 0 and f sj > 0. We prove the following proposition:

PROPOSITION 3: Consider the problem with firm-level fixed costs of importing (A19)

and an increase in the assembly potential of plant k, ξ̂ak > ξak , holding other parameters and

P σ−1
i Ei fixed. If ε ≤ σ, then Îa ≥ Ia. Assume that α(ε− 1) ≥ ρ − 1. If ε > σ, then it is

possible that Îa−k > Ia−k.

PROOF:
Consider the following example. Assume that there is only one feasible destination

market i, with τaki′ = ∞ for i′ 6= i, and one sourcing location j, with τ sj′k = ∞ for j′ 6= j.
Assume also that τ sjk = 1 for all k. Suppose that all assembly fixed costs are very small
and equal to δ > 0. The firm-level fixed cost of sourcing from j is such that

κπϕ
σ−1EiP

σ−1
i ·

(
ξsj
)α(σ−1)

ρ−1 ·
(
ξak (τki)

1−ε
+
∑
l 6=k

ξal (τali)
1−ε

)σ−1
ε−1

< wjf
s
j

κπϕ
σ−1EiP

σ−1
i ·

(
ξsj
)α(σ−1)

ρ−1 ·
(
ξ̂ak (τki)

1−ε
+
∑
l 6=k

ξal (τali)
1−ε

)σ−1
ε−1

> wjf
s
j .

For sufficiently small δ, an increase in ξak leads from an optimum with no assembly plants
to the optimum in which all plants are activated. �

Plant-Level Fixed Costs

Consider the problem with plant-level fixed costs of exporting. A firm solves the following
problem:
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max
Ix,Ia

κπϕ
σ−1 ·

∑
i∈J

EiP
σ−1
i

[∑
k∈J

Ixk,iIak · ξak (τaki)
1−ε

]σ−1
ε−1

−

−
∑
i∈J

∑
k∈J

Ixk,i · wifxk,i︸ ︷︷ ︸
Plant-Level FC

−
∑
k∈J

Iak · wkfak︸ ︷︷ ︸
Firm-Level FC

.
(A20)

We can then prove that:

PROPOSITION 4: Consider the problem in (A20) and an increase in the assembly po-

tential of plant k, ξ̂ak > ξak , holding other parameters and P σ−1
i Ei fixed. If ε ≤ σ, then

Îa ≥ Ia and Îx ≥ Ix. If ε > σ and the solution is unique, then Îak ≥ Iak , and it is not

possible that Îa−k > Ia−k and Îx > Ix.

PROOF:
For the case ε ≤ σ, we can apply Topkis’ theorem. Consider the case ε > σ. The

proof follows the same steps as the proof of Proposition 1. Under ε > σ, the assumption
Îa−k > Ia−k and Îx > Ix contradicts the optimality (or uniqueness) of the solution. �

Now consider the problem with plant-level fixed costs of importing. A firm solves the
following problem:

max
Is,Ia

κπϕ
σ−1 ·

∑
i∈J

EiP
σ−1
i

∑
k∈J

Iak · ξak (τaki)
1−ε ·

(∑
j∈J

Isj,kξsj
(
τ sjk
)1−ρ)α(ε−1)

ρ−1


σ−1
ε−1

−

−
∑
k∈J

∑
j∈J

Isj,k · wjfxj,k︸ ︷︷ ︸
Plant-Level FC

−
∑
k∈J

Iak · wkfak︸ ︷︷ ︸
Firm-Level FC

.

(A21)

We can then prove that:

PROPOSITION 5: Consider the problem in (A21) and an increase in the assembly po-

tential of plant k, ξ̂ak > ξak , holding other parameters and P σ−1
i Ei fixed. Assume that

α(ε− 1) ≥ ρ− 1. If ε ≤ σ, then Îa ≥ Ia and Îs ≥ Is. If ε > σ and the solution is unique,

then Îak ≥ Iak , and it is not possible that Îa−k > Ia−k and Îs > Is.

PROOF:
For the case ε ≤ σ, we can apply Topkis’ theorem. Consider the case ε > σ. The

proof follows the same steps as the proof of Proposition 1. Under ε > σ, the assumption
Îa−k > Ia−k and Îs > Is contradicts the optimality (or uniqueness) of the solution. �




